@article{WongWinterHartigetal.2014, author = {Wong, David and Winter, Oliver and Hartig, Christina and Siebels, Svenja and Szyska, Martin and Tiburzy, Benjamin and Meng, Lingzhang and Kulkarni, Upasana and F{\"a}hnrich, Anke and Bommert, Kurt and Bargou, Ralf and Berek, Claudia and Van, Trung Chu and Bogen, Bjarne and Jundt, Franziska and Manz, Rudolf Armin}, title = {Eosinophils and Megakaryocytes Support the Early Growth of Murine MOPC315 Myeloma Cells in Their Bone Marrow Niches}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {10}, doi = {10.1371/journal.pone.0109018}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115269}, pages = {e109018}, year = {2014}, abstract = {Multiple myeloma is a bone marrow plasma cell tumor which is supported by the external growth factors APRIL and IL-6, among others. Recently, we identified eosinophils and megakaryocytes to be functional components of the micro-environmental niches of benign bone marrow plasma cells and to be important local sources of these cytokines. Here, we investigated whether eosinophils and megakaryocytes also support the growth of tumor plasma cells in the MOPC315. BM model for multiple myeloma. As it was shown for benign plasma cells and multiple myeloma cells, IL-6 and APRIL also supported MOPC315. BM cell growth in vitro, IL-5 had no effect. Depletion of eosinophils in vivo by IL-5 blockade led to a reduction of the early myeloma load. Consistent with this, myeloma growth in early stages was retarded in eosinophil-deficient Delta dblGATA-1 mice. Late myeloma stages were unaffected, possibly due to megakaryocytes compensating for the loss of eosinophils, since megakaryocytes were found to be in contact with myeloma cells in vivo and supported myeloma growth in vitro. We conclude that eosinophils and megakaryocytes in the niches for benign bone marrow plasma cells support the growth of malignant plasma cells. Further investigations are required to test whether perturbation of these niches represents a potential strategy for the treatment of multiple myeloma.}, language = {en} } @article{MuhammadRudolfPhametal.2018, author = {Muhammad, Khalid and Rudolf, Ronald and Pham, Duong Anh Thuy and Klein-Hessling, Stefan and Takata, Katsuyoshi and Matsushita, Nobuko and Ellenrieder, Volker and Kondo, Eisaku and  Serfling, Edgar}, title = {Induction of Short NFATc1/αA Isoform Interferes with Peripheral B Cell Differentiation}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {32}, issn = {1664-3224}, doi = {10.3389/fimmu.2018.00032}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197501}, year = {2018}, abstract = {In lymphocytes, immune receptor signals induce the rapid nuclear translocation of preformed cytosolic NFAT proteins. Along with co-stimulatory signals, persistent immune receptor signals lead to high levels of NFATc1/αA, a short NFATc1 isoform, in effector lymphocytes. Whereas NFATc1 is not expressed in plasma cells, in germinal centers numerous centrocytic B cells express nuclear NFATc1/αA. When overexpressed in chicken DT40 B cells or murine WEHI 231 B cells, NFATc1/αA suppressed their cell death induced by B cell receptor signals and affected the expression of genes controlling the germinal center reaction and plasma cell formation. Among those is the Prdm1 gene encoding Blimp-1, a key factor of plasma cell formation. By binding to a regulatory DNA element within exon 1 of the Prdm1 gene, NFATc1/αA suppresses Blimp-1 expression. Since expression of a constitutive active version of NFATc1/αA interfered with Prdm1 RNA expression, LPS-mediated differentiation of splenic B cells to plasmablasts in vitro and reduced immunoglobulin production in vivo, one may conclude that NFATc1/αA plays an important role in controlling plasmablast/plasma cell formation.}, language = {en} } @article{HofgaardJodalBommertetal.2012, author = {Hofgaard, Peter O. and Jodal, Henriette C. and Bommert, Kurt and Huard, Bertrand and Caers, Jo and Carlsen, Harald and Schwarzer, Rolf and Sch{\"u}nemann, Nicole and Jundt, Franziska and Lindeberg, Mona M. and Bogen, Bjarne}, title = {A Novel Mouse Model for Multiple Myeloma (MOPC315.BM) That Allows Noninvasive Spatiotemporal Detection of Osteolytic Disease}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0051892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131117}, pages = {e51892}, year = {2012}, abstract = {Multiple myeloma (MM) is a lethal human cancer characterized by a clonal expansion of malignant plasma cells in bone marrow. Mouse models of human MM are technically challenging and do not always recapitulate human disease. Therefore, new mouse models for MM are needed. Mineral-oil induced plasmacytomas (MOPC) develop in the peritoneal cavity of oil-injected BALB/c mice. However, MOPC typically grow extramedullary and are considered poor models of human MM. Here we describe an in vivo-selected MOPC315 variant, called MOPC315.BM, which can be maintained in vitro. When injected i.v. into BALB/c mice, MOPC315.BM cells exhibit tropism for bone marrow. As few as 10\(^4\) MOPC315.BM cells injected i.v. induced paraplegia, a sign of spinal cord compression, in all mice within 3-4 weeks. MOPC315.BM cells were stably transfected with either firefly luciferase (MOPC315.BM.Luc) or DsRed (MOPC315.BM.DsRed) for studies using noninvasive imaging. MOPC315.BM.Luc cells were detected in the tibiofemoral region already 1 hour after i.v. injection. Bone foci developed progressively, and as of day 5, MM cells were detected in multiple sites in the axial skeleton. Additionally, the spleen (a hematopoietic organ in the mouse) was invariably affected. Luminescent signals correlated with serum myeloma protein concentration, allowing for easy tracking of tumor load with noninvasive imaging. Affected mice developed osteolytic lesions. The MOPC315.BM model employs a common strain of immunocompetent mice (BALB/c) and replicates many characteristics of human MM. The model should be suitable for studies of bone marrow tropism, development of osteolytic lesions, drug testing, and immunotherapy in MM.}, language = {en} } @article{DanhofRascheMottoketal.2021, author = {Danhof, Sophia and Rasche, Leo and Mottok, Anja and Steinm{\"u}ller, Tabea and Zhou, Xiang and Schreder, Martin and Kilian, Teresa and Strifler, Susanne and Rosenwald, Andreas and Hudecek, Michael and Einsele, Hermann and Gerhard-Hartmann, Elena}, title = {Elotuzumab for the treatment of extramedullary myeloma: a retrospective analysis of clinical efficacy and SLAMF7 expression patterns}, series = {Annals of Hematology}, volume = {100}, journal = {Annals of Hematology}, number = {6}, issn = {1432-0584}, doi = {10.1007/s00277-021-04447-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266468}, pages = {1537-1546}, year = {2021}, abstract = {Extramedullary disease (EMD) represents a high-risk state of multiple myeloma (MM) associated with poor prognosis. While most anti-myeloma therapeutics demonstrate limited efficacy in this setting, some studies exploring the utility of chimeric antigen receptor (CAR)-modified T cells reported promising results. We have recently designed SLAMF7-directed CAR T cells for the treatment of MM. SLAMF7 is a transmembrane receptor expressed on myeloma cells that plays a role in myeloma cell homing to the bone marrow. Currently, the only approved anti-SLAMF7 therapeutic is the monoclonal antibody elotuzumab, but its efficacy in EMD has not been investigated thoroughly. Thus, we retrospectively analyzed the efficacy of elotuzumab-based combination therapy in a cohort of 15 patients with EMD. Moreover, since the presence of the target antigen is an indispensable prerequisite for effective targeted therapy, we investigated the SLAMF7 expression on extramedullary located tumor cells before and after treatment. We observed limited efficacy of elotuzumab-based combination therapies, with an overall response rate of 40\% and a progression-free and overall survival of 3.8 and 12.9 months, respectively. Before treatment initiation, all available EMD tissue specimens (n = 3) demonstrated a strong and consistent SLAMF7 surface expression by immunohistochemistry. Furthermore, to investigate a potential antigen reduction under therapeutic selection pressure, we analyzed samples of de novo EMD (n = 3) outgrown during elotuzumab treatment. Again, immunohistochemistry documented strong and consistent SLAMF7 expression in all samples. In aggregate, our data point towards a retained expression of SLAMF7 in EMD and encourage the development of more potent SLAMF7-directed immunotherapies, such as CAR T cells.}, language = {en} }