@article{SommerAmrBavendieketal.2022, author = {Sommer, Kim K. and Amr, Ali and Bavendiek, Udo and Beierle, Felix and Brunecker, Peter and Dathe, Henning and Eils, J{\"u}rgen and Ertl, Maximilian and Fette, Georg and Gietzelt, Matthias and Heidecker, Bettina and Hellenkamp, Kristian and Heuschmann, Peter and Hoos, Jennifer D. E. and Keszty{\"u}s, Tibor and Kerwagen, Fabian and Kindermann, Aljoscha and Krefting, Dagmar and Landmesser, Ulf and Marschollek, Michael and Meder, Benjamin and Merzweiler, Angela and Prasser, Fabian and Pryss, R{\"u}diger and Richter, Jendrik and Schneider, Philipp and St{\"o}rk, Stefan and Dieterich, Christoph}, title = {Structured, harmonized, and interoperable integration of clinical routine data to compute heart failure risk scores}, series = {Life}, volume = {12}, journal = {Life}, number = {5}, issn = {2075-1729}, doi = {10.3390/life12050749}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275239}, year = {2022}, abstract = {Risk prediction in patients with heart failure (HF) is essential to improve the tailoring of preventive, diagnostic, and therapeutic strategies for the individual patient, and effectively use health care resources. Risk scores derived from controlled clinical studies can be used to calculate the risk of mortality and HF hospitalizations. However, these scores are poorly implemented into routine care, predominantly because their calculation requires considerable efforts in practice and necessary data often are not available in an interoperable format. In this work, we demonstrate the feasibility of a multi-site solution to derive and calculate two exemplary HF scores from clinical routine data (MAGGIC score with six continuous and eight categorical variables; Barcelona Bio-HF score with five continuous and six categorical variables). Within HiGHmed, a German Medical Informatics Initiative consortium, we implemented an interoperable solution, collecting a harmonized HF-phenotypic core data set (CDS) within the openEHR framework. Our approach minimizes the need for manual data entry by automatically retrieving data from primary systems. We show, across five participating medical centers, that the implemented structures to execute dedicated data queries, followed by harmonized data processing and score calculation, work well in practice. In summary, we demonstrated the feasibility of clinical routine data usage across multiple partner sites to compute HF risk scores. This solution can be extended to a large spectrum of applications in clinical care.}, language = {en} } @article{BeierleSchobelVogeletal.2021, author = {Beierle, Felix and Schobel, Johannes and Vogel, Carsten and Allgaier, Johannes and Mulansky, Lena and Haug, Fabian and Haug, Julian and Schlee, Winfried and Holfelder, Marc and Stach, Michael and Schickler, Marc and Baumeister, Harald and Cohrdes, Caroline and Deckert, J{\"u}rgen and Deserno, Lorenz and Edler, Johanna-Sophie and Eichner, Felizitas A. and Greger, Helmut and Hein, Grit and Heuschmann, Peter and John, Dennis and Kestler, Hans A. and Krefting, Dagmar and Langguth, Berthold and Meybohm, Patrick and Probst, Thomas and Reichert, Manfred and Romanos, Marcel and St{\"o}rk, Stefan and Terhorst, Yannik and Weiß, Martin and Pryss, R{\"u}diger}, title = {Corona Health — A Study- and Sensor-Based Mobile App Platform Exploring Aspects of the COVID-19 Pandemic}, series = {International Journal of Environmental Research and Public Health}, volume = {18}, journal = {International Journal of Environmental Research and Public Health}, number = {14}, issn = {1660-4601}, doi = {10.3390/ijerph18147395}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242658}, year = {2021}, abstract = {Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July 2020) in eight languages and attracted 7290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.}, language = {en} }