@unpublished{RoederPetersenIssleretal.2019, author = {R{\"o}der, Anja and Petersen, Jens and Issler, Kevin and Fischer, Ingo and Mitric, Roland and Poisson, Lionel}, title = {Exploring the Excited-State Dynamics of Hydrocarbon Radicals, Biradicals and Carbenes using Time-Resolved Photoelectron Spectroscopy and Field-Induced Surface Hopping Simulations}, series = {The Journal of Physical Chemistry A}, journal = {The Journal of Physical Chemistry A}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198734}, year = {2019}, abstract = {Reactive hydrocarbon molecules like radicals, biradicals and carbenes are not only key players in combustion processes and interstellar and atmospheric chemistry, but some of them are also important intermediates in organic synthesis. These systems typically possess many low-lying, strongly coupled electronic states. After light absorption, this leads to rich photodynamics characterized by a complex interplay of nuclear and electronic motion, which is still not comprehensively understood and not easy to investigate both experimentally and theoretically. In order to elucidate trends and contribute to a more general understanding, we here review our recent work on excited-state dynamics of open-shell hydrocarbon species using time-resolved photoelectron spectroscopy and field-induced surface hopping simulations, and report new results on the excited-state dynamics of the tropyl and the 1-methylallyl radical. The different dynamics are compared, and the difficulties and future directions of time-resolved photoelectron spectroscopy and excited state dynamics simulations of open-shell hydrocarbon molecules are discussed.}, language = {en} } @unpublished{PetersenLindnerMitric2018, author = {Petersen, Jens and Lindner, Joachim O. and Mitric, Roland}, title = {Ultrafast Photodynamics of Glucose}, series = {Journal of Physical Chemistry B}, journal = {Journal of Physical Chemistry B}, doi = {10.1021/acs.jpcb.7b08602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159155}, year = {2018}, abstract = {We have investigated the photodynamics of \(\beta\)-D-glucose employing our field-induced surface hopping method (FISH), which allows us to simulate the coupled electron-nuclear dynamics, including explicitly nonadiabatic effects and light-induced excitation. Our results reveal that from the initially populated S\(_{1}\) and S\(_{2}\) states, glucose returns nonradiatively to the ground state within about 200 fs. This takes place mainly via conical intersections (CIs) whose geometries in most cases involve the elongation of a single O-H bond, while in some instances ring-opening due to dissociation of a C-O bond is observed. Experimentally, excitation to a distinct excited electronic state is improbable due to the presence of a dense manifold of states bearing similar oscillator strengths. Our FISH simulations explicitly including a UV laser pulse of 6.43 eV photon energy reveals that after initial excitation the population is almost equally spread over several close-lying electronic states. This is followed by a fast nonradiative decay on the time scale of 100-200 fs, with the final return to the ground state proceeding via the S\(_{1}\) state through the same types of CIs as observed in the field-free simulations.}, language = {en} } @article{HirschPachnerFischeretal.2020, author = {Hirsch, Florian and Pachner, Kai and Fischer, Ingo and Issler, Kevin and Petersen, Jens and Mitric, Roland and Bakels, Sjors and Rijs, Anouk M.}, title = {Do Xylylenes Isomerize in Pyrolysis?}, series = {ChemPhysChem}, volume = {21}, journal = {ChemPhysChem}, number = {14}, doi = {10.1002/cphc.202000317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218316}, pages = {1515 -- 1518}, year = {2020}, abstract = {We report infrared spectra of xylylene isomers in the gas phase, using free electron laser (FEL) radiation. All xylylenes were generated by flash pyrolysis. The IR spectra were obtained by monitoring the ion dip signal, using a IR/UV double resonance scheme. A gas phase IR spectrum of para-xylylene  was recorded, whereas ortho- and meta-xylylene were found to partially rearrange to benzocyclobutene and styrene. Computations of the UV oscillator strength  for all molecules were carried out and provde an explanation for the observation of the isomerization products.}, language = {en} }