@article{ZieglerAlmosMcNeilletal.2020, author = {Ziegler, Georg C. and Almos, Peter and McNeill, Rhiannon V. and Jansch, Charline and Lesch, Klaus-Peter}, title = {Cellular effects and clinical implications of SLC2A3 copy number variation}, series = {Journal of Cellular Physiology}, volume = {235}, journal = {Journal of Cellular Physiology}, number = {12}, doi = {10.1002/jcp.29753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218009}, pages = {9021 -- 9036}, year = {2020}, abstract = {SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3), which facilitates diffusion of glucose across plasma membranes. The human brain depends on a steady glucose supply for ATP generation, which consequently fuels critical biochemical processes, such as axonal transport and neurotransmitter release. Besides its role in the central nervous system, GLUT3 is also expressed in nonneural organs, such as the heart and white blood cells, where it is equally involved in energy metabolism. In cancer cells, GLUT3 overexpression contributes to the Warburg effect by answering the cell's increased glycolytic demands. The SLC2A3 gene locus at chromosome 12p13.31 is unstable and prone to non-allelic homologous recombination events, generating multiple copy number variants (CNVs) of SLC2A3 which account for alterations in SLC2A3 expression. Recent associations of SLC2A3 CNVs with different clinical phenotypes warrant investigation of the potential influence of these structural variants on pathomechanisms of neuropsychiatric, cardiovascular, and immune diseases. In this review, we accumulate and discuss the evidence how SLC2A3 gene dosage may exert diverse protective or detrimental effects depending on the pathological condition. Cellular states which lead to increased energetic demand, such as organ development, proliferation, and cellular degeneration, appear particularly susceptible to alterations in SLC2A3 copy number. We conclude that better understanding of the impact of SLC2A3 variation on disease etiology may potentially provide novel therapeutic approaches specifically targeting this GLUT.}, language = {en} } @article{ZayatsJacobsenKleppeetal.2016, author = {Zayats, T and Jacobsen, KK and Kleppe, R and Jacob, CP and Kittel-Schneider, S and Ribas{\´e}s, M and Ramos-Quiroga, JA and Richarte, V and Casas, M and Mota, NR and Grevet, EH and Klein, M and Corominas, J and Bralten, J and Galesloot, T and Vasquez, AA and Herms, S and Forstner, AJ and Larsson, H and Breen, G and Asherson, P and Gross-Lesch, S and Lesch, KP and Cichon, S and Gabrielsen, MB and Holmen, OL and Bau, CHD and Buitelaar, J and Kiemeney, L and Faraone, SV and Cormand, B and Franke, B and Reif, A and Haavik, J and Johansson, S}, title = {Exome chip analyses in adult attention deficit hyperactivity disorder}, series = {Translational Psychiatry}, volume = {6}, journal = {Translational Psychiatry}, number = {e923}, doi = {10.1038/tp.2016.196}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168297}, year = {2016}, abstract = {Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable childhood-onset neuropsychiatric condition, often persisting into adulthood. The genetic architecture of ADHD, particularly in adults, is largely unknown. We performed an exome-wide scan of adult ADHD using the Illumina Human Exome Bead Chip, which interrogates over 250 000 common and rare variants. Participants were recruited by the International Multicenter persistent ADHD CollaboraTion (IMpACT). Statistical analyses were divided into 3 steps: (1) gene-level analysis of rare variants (minor allele frequency (MAF)<1\%); (2) single marker association tests of common variants (MAF⩾1\%), with replication of the top signals; and (3) pathway analyses. In total, 9365 individuals (1846 cases and 7519 controls) were examined. Replication of the most associated common variants was attempted in 9847 individuals (2077 cases and 7770 controls) using fixed-effects inverse variance meta-analysis. With a Bonferroni-corrected significance level of 1.82E-06, our analyses of rare coding variants revealed four study-wide significant loci: 6q22.1 locus (P=4.46E-08), where NT5DC1 and COL10A1 reside; the SEC23IP locus (P=6.47E-07); the PSD locus (P=7.58E-08) and ZCCHC4 locus (P=1.79E-06). No genome-wide significant association was observed among the common variants. The strongest signal was noted at rs9325032 in PPP2R2B (odds ratio=0.81, P=1.61E-05). Taken together, our data add to the growing evidence of general signal transduction molecules (NT5DC1, PSD, SEC23IP and ZCCHC4) having an important role in the etiology of ADHD. Although the biological implications of these findings need to be further explored, they highlight the possible role of cellular communication as a potential core component in the development of both adult and childhood forms of ADHD.}, language = {en} } @article{WolfBraunHainingetal.2016, author = {Wolf, Karen and Braun, Attila and Haining, Elizabeth J. and Tseng, Yu-Lun and Kraft, Peter and Schuhmann, Michael K. and Gotru, Sanjeev K. and Chen, Wenchun and Hermanns, Heike M. and Stoll, Guido and Lesch, Klaus-Peter and Nieswandt, Bernhard}, title = {Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0147664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146399}, pages = {e0147664}, year = {2016}, abstract = {Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt\(^{-/-}\)) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt\(^{-/-}\) platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca\(^{2+}\) entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt\(^{-/-}\) platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt\(^{-/-}\) mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt\(^{-/-}\) mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization.}, language = {en} } @phdthesis{Thuy2015, author = {Thuy, Elisabeth}, title = {Der Einfluss einer lebenslangen Defizienz in der Serotoninsynthese auf die neuronale Aktivierung des Hippocampus nach Furchtkonditionierungstraining}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Ver{\"a}nderungen des zentralen serotonergen Systems k{\"o}nnen mit diversen psychiatrischen Krankheiten wie z. B. Depressionen, Aufmerksamkeitsdefizit/ Hyperaktivit{\"a}ts-St{\"o}rung (ADHS), Phobien oder Panik- und Angstst{\"o}rungen assoziiert werden. Die fortlaufende Untersuchung des Neurotransmitters Serotonin (5-HT) und seine Bedeutung f{\"u}r physiologische und verhaltens- bezogene Prozesse ist daher unerl{\"a}sslich. Tiermodelle, die auf Ausschaltung elementarer oder assoziierter Gene des serotonergen Systems beruhen, sind infolgedessen eine ausgezeichnete M{\"o}glichkeit anatomische, (patho)physiolo- gische und verhaltensbezogene Auswirkungen eines fehlgeleiteten serotoner- gen Systems zu untersuchen und zu analysieren. Aufgrund ihrer großen Be- deutung f{\"u}r Lern- und Ged{\"a}chtnisprozesse steht die Hirnregion des dorsalen Hippocampus im Fokus dieser Dissertation. Die Analyse umfasste jeweils die gesamte Hirnstruktur des Hippocampus bzw. seine Unterregionen, Gyrus dentatus (DG), Cornu Ammonis (CA)1 und CA3. Die Zielsetzung dieser Arbeit war die Untersuchung zellul{\"a}rer bzw. molekularer Ver{\"a}nderungen von konstitutiven Tryptophanhydroxylase 2 (Tph2) knockout (KO) M{\"a}usen. Durch die Inaktivierung von Tph2 und damit dem geschwindig- keitsbestimmenden Enzym (TPH2) der Serotoninsynthese, wurde im zentralen Nervensystem (ZNS) der KO M{\"a}use ein Mangel von 5-HT festgestellt. Der dorsale Hippocampus wurde auf zellspezifische Ver{\"a}nderungen nach dem Furchtkonditionierungstest analysiert. Die Reaktion der Neurone in den drei Unterregionen der Hirnstruktur wurde durch Immunofluoreszenzf{\"a}rbung des „immediate-early" Genprodukts c-fos bzw. des Calcium-bindenden Proteins Parvalbumin untersucht. Es wurde dabei zum einen die absolute Zellzahl in den Strukturen erfasst und zum anderen die Analyse bez{\"u}glich des Volumens vorgenommen. Die Zelldichte von c-Fos wies signifikante Unterschiede zwischen den Gruppen im gesamten dorsalen Hippocampus und bei genauerer Betrachtung in der Unterregion des DG auf. Die Tph2-/- M{\"a}use zeigten nach dem Furchtkonditionierungstest eine pr{\"a}gnante Erh{\"o}hung der aktivierten Zellen. Es scheint, dass 5-HT eine zu starke Aktivierung des dorsalen Hippocampus verhindert um schlechte kontextbezogene Ged{\"a}chtnisinhalte nicht zu verfesti- gen. Dabei inhibiert 5-HT Zellen im DG und der CA1 Region die nicht zu den Parvalbumin-immunoreaktiven GABAergen Interneuronen geh{\"o}ren.}, subject = {Serotonin}, language = {de} } @article{SvirinVeniaminovaCostaNunesetal.2022, author = {Svirin, Evgeniy and Veniaminova, Ekaterina and Costa-Nunes, Jo{\~a}o Pedro and Gorlova, Anna and Umriukhin, Aleksei and Kalueff, Allan V. and Proshin, Andrey and Anthony, Daniel C. and Nedorubov, Andrey and Tse, Anna Chung Kwan and Walitza, Susanne and Lim, Lee Wei and Lesch, Klaus-Peter and Strekalova, Tatyana}, title = {Predation stress causes excessive aggression in female mice with partial genetic inactivation of tryptophan hydroxylase-2: evidence for altered myelination-related processes}, series = {Cells}, volume = {11}, journal = {Cells}, number = {6}, issn = {2073-4409}, doi = {10.3390/cells11061036}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267250}, year = {2022}, abstract = {The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2\(^{-/-}\)) mice. In heterozygous male mice (Tph2\(^{+/-}\)), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2\(^{+/-}\) mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2\(^{+/-}\) females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, na{\"i}ve female Tph2\(^{+/-}\) mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.}, language = {en} } @article{StrekalovaVeniaminovaSvirinetal.2021, author = {Strekalova, Tatyana and Veniaminova, Ekaterina and Svirin, Evgeniy and Kopeikina, Ekaterina and Veremeyko, Tatyana and Yung, Amanda W. Y. and Proshin, Andrey and Tan, Shawn Zheng Kai and Khairuddin, Sharafuddin and Lim, Lee Wei and Lesch, Klaus-Peter and Walitza, Susanne and Anthony, Daniel C. and Ponomarev, Eugene D.}, title = {Sex-specific ADHD-like behaviour, altered metabolic functions, and altered EEG activity in sialyltransferase ST3GAL5-deficient mice}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {12}, issn = {2218-273X}, doi = {10.3390/biom11121759}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250071}, year = {2021}, abstract = {A deficiency in GM3-derived gangliosides, resulting from a lack of lactosylceramide-alpha-2,3-sialyltransferase (ST3GAL5), leads to severe neuropathology, including epilepsy and metabolic abnormalities. Disruption of ganglioside production by this enzyme may also have a role in the development of neuropsychiatric disorders. ST3Gal5 knock-out (St3gal5\(^{-/-}\)) mice lack a-, b-, and c-series gangliosides, but exhibit no overt neuropathology, possibly owing to the production of compensatory 0-series glycosphingolipids. Here, we sought to investigate the possibility that St3gal5\(^{-/-}\) mice might exhibit attention-deficit/hyperactivity disorder (ADHD)-like behaviours. In addition, we evaluated potential metabolic and electroencephalogram (EEG) abnormalities. St3gal5\(^{-/-}\) mice were subjected to behavioural testing, glucose tolerance tests, and the levels of expression of brain and peripheral A and B isoforms of the insulin receptor (IR) were measured. We found that St3gal5\(^{-/-}\) mice exhibit locomotor hyperactivity, impulsivity, neophobia, and anxiety-like behavior. The genotype also altered blood glucose levels and glucose tolerance. A sex bias was consistently found in relation to body mass and peripheral IR expression. Analysis of the EEG revealed an increase in amplitude in St3gal5\(^{-/-}\) mice. Together, St3gal5\(^{-/-}\) mice exhibit ADHD-like behaviours, altered metabolic and EEG measures providing a useful platform for better understanding of the contribution of brain gangliosides to ADHD and associated comorbidities.}, language = {en} } @article{StrekalovaPavlovTrofimovetal.2022, author = {Strekalova, Tatyana and Pavlov, Dmitrii and Trofimov, Alexander and Anthony, Daniel C. and Svistunov, Andrei and Proshin, Andrey and Umriukhin, Aleksei and Lyundup, Alexei and Lesch, Klaus-Peter and Cespuglio, Raymond}, title = {Hippocampal over-expression of cyclooxygenase-2 (COX-2) is associated with susceptibility to stress-induced anhedonia in mice}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {4}, issn = {1422-0067}, doi = {10.3390/ijms23042061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284056}, year = {2022}, abstract = {The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram.}, language = {en} } @article{SpinelliMuellerFriedeletal.2013, author = {Spinelli, Simona and M{\"u}ller, Tanja and Friedel, Miriam and Sigrist, Hannes and Lesch, Klaus-Peter and Henkelman, Mark and Rudin, Markus and Seifritz, Erich and Pryce, Christopher R.}, title = {Effects of repeated adolescent stress and serotonin transporter gene partial knockout in mice on behaviors and brain structures relevant to major depression}, series = {Frontiers in Behavioral Neuroscience}, volume = {7}, journal = {Frontiers in Behavioral Neuroscience}, doi = {10.3389/fnbeh.2013.00215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122240}, pages = {215}, year = {2013}, abstract = {In humans, exposure to stress during development is associated with structural and functional alterations of the prefrontal cortex (PFC), amygdala (AMY), and hippocampus (HC) and their circuits of connectivity, and with an increased risk for developing major depressive disorder particularly in carriers of the short (s) variant of the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR). Although changes in these regions are found in carriers of the s allele and/or in depressed patients, evidence for a specific genotype x developmental stress effect on brain structure and function is limited. Here, we investigated the effect of repeated stress exposure during adolescence in mice with partial knockout of the 5-HIT gene (HET) vs. wildtype (WT) on early-adulthood behavioral measures and brain structure [using magnetic resonance imaging (MRI)] relevant to human major depression. Behaviorally, adolescent stress (AS) increased anxiety and decreased activity and did so to a similar degree in HET and WT. In a probabilistic reversal learning task, HET-AS mice achieved fewer reversals than did HET-No-AS mice. 5-HIT genotype and AS were without effect on corticosterone stress response. In terms of structural brain differences, AS reduced the volume of two long-range white matter tracts, the optic tract (OT) and the cerebral peduncle (CP), in WT mice specifically. In a region-of-interest analysis, AS was associated with increased HC volume and HET genotype with a decreased frontal lobe volume. In conclusion, we found that 5-HIT and AS genotype exerted long-term effects on behavior and development of brain regions relevant to human depression.}, language = {en} } @article{SongJiaZhangetal.2016, author = {Song, Ning-Ning and Jia, Yun-Fang and Zhang, Lei and Zhang, Qiong and Huang, Ying and Liu, Xiao-Zhen and Hu, Ling and Lan, Wei and Chen, Ling and Lesch, Klaus-Peter and Chen, Xiaoyan and Xu, Lin and Ding, Yu-Qiang}, title = {Reducing central serotonin in adulthood promotes hippocampal neurogenesis}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {20338}, doi = {10.1038/srep20338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168004}, year = {2016}, abstract = {Chronic administration of selective serotonin reuptake inhibitors (SSRIs), which up-regulates central serotonin (5-HT) system function, enhances adult hippocampal neurogenesis. However, the relationship between central 5-HT system and adult neurogenesis has not fully been understood. Here, we report that lowering 5-HT level in adulthood is also able to enhance adult hippocampal neurogenesis. We used tamoxifen (TM)-induced Cre in Pet1-CreER\(^{T2}\) mice to either deplete central serotonergic (5-HTergic) neurons or inactivate 5-HT synthesis in adulthood and explore the role of central 5-HT in adult hippocampal neurogenesis. A dramatic increase in hippocampal neurogenesis is present in these two central 5-HT-deficient mice and it is largely prevented by administration of agonist for 5-HTR2c receptor. In addition, the survival of new-born neurons in the hippocampus is enhanced. Furthermore, the adult 5-HT-deficient mice showed reduced depression-like behaviors but enhanced contextual fear memory. These findings demonstrate that lowering central 5-HT function in adulthood can also enhance adult hippocampal neurogenesis, thus revealing a new aspect of central 5-HT in regulating adult neurogenesis.}, language = {en} } @article{SchaeferFriedrichJorgensenetal.2018, author = {Sch{\"a}fer, Nadine and Friedrich, Maximilian and J{\o}rgensen, Morten Egevang and Kollert, Sina and Koepsell, Hermann and Wischmeyer, Erhard and Lesch, Klaus-Peter and Geiger, Dietmar and D{\"o}ring, Frank}, title = {Functional analysis of a triplet deletion in the gene encoding the sodium glucose transporter 3, a potential risk factor for ADHD}, series = {PLoS ONE}, volume = {13}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0205109}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176495}, pages = {e0205109}, year = {2018}, abstract = {Sodium-glucose transporters (SGLT) belong to the solute carrier 5 family, which is characterized by sodium dependent transport of sugars and other solutes. In contrast, the human SGLT3 (hSGLT3) isoform, encoded by SLC5A4, acts as a glucose sensor that does not transport sugar but induces membrane depolarization by Na\(^{+}\) currents upon ligand binding. Whole-exome sequencing (WES) of several extended pedigrees with high density of attention-deficit/hyperactivity disorder (ADHD) identified a triplet ATG deletion in SLC5A4 leading to a single amino acid loss (ΔM500) in the hSGLT3 protein imperfectly co-segregating with the clinical phenotype of ADHD. Since mutations in homologous domains of hSGLT1 and hSGLT2 were found to affect intestinal and renal function, respectively, we analyzed the functional properties of hSGLT3[wt] and [ΔM500] by voltage clamp and current clamp recordings from cRNA-injected Xenopus laevis oocytes. The cation conductance of hSGLT3[wt] was activated by application of glucose or the specific agonist 1-desoxynojirimycin (DNJ) as revealed by inward currents in the voltage clamp configuration and cell depolarization in the current clamp mode. Almost no currents and changes in membrane potential were observed when glucose or DNJ were applied to hSGLT3[ΔM500]-injected oocytes, demonstrating a loss of function by this amino acid deletion in hSGLT3. To monitor membrane targeting of wt and mutant hSGLT3, fusion constructs with YFP were generated, heterologously expressed in Xenopus laevis oocytes and analyzed for membrane fluorescence by confocal microscopy. In comparison to hSGLT3[wt] the fluorescent signal of mutant [ΔM500] was reduced by 43\% indicating that the mutant phenotype might mainly result from inaccurate membrane targeting. As revealed by homology modeling, residue M500 is located in TM11 suggesting that in addition to the core structure (TM1-TM10) of the transporter, the surrounding TMs are equally crucial for transport/sensor function. In conclusion, our findings indicate that the deletion [ΔM500] in hSGLT3 inhibits membrane targeting and thus largely disrupts glucose-induced sodium conductance, which may, in interaction with other ADHD risk-related gene variants, influence the risk for ADHD in deletion carriers.}, language = {en} }