@article{HovestadtPoethkeMessner2000, author = {Hovestadt, Thomas and Poethke, Hans J. and Messner, Stefan}, title = {Variability in dispersal distances generates typical successional patterns: a simple simulation model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48178}, year = {2000}, abstract = {More recently, it became clear that conclusions drawn from traditional ecological theory may be altered substantially if the spatial dimension of species interactions is considered explicitly. Regardless of the details of these models, spatially explicit simulations of ecological processes have nearly universally shown that spatial or spatio-temporal patterns in species distributions can emerge even from homogeneous starting conditions; limited dispersal is one of the key factors responsible for the development of such aggregated and patchy distributions (cf., Pacala 1986, Holmes et al. 1994, Molofsky 1994, Tilman 1994, Bascompte and Sole 1995, 1997, 1998, Jeltsch et al. 1999). In line with these ideas, we wish to draw attention to the fact that in heterogeneous landscapes differences in characteristic dispersal distances between species are a sufficient precondition for the emergence of a successional pattern. We will use a simple, spatially explicit simulation program to demonstrate the validity of this statement. We will also show that the speed of the successional progress depends on scale and heterogeneity in the distribution of suitable habitat.}, language = {en} } @article{PoethkeHovestadt2002, author = {Poethke, Hans J. and Hovestadt, Thomas}, title = {Evolution of density-and patch-size-dependent dispersal rates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49659}, year = {2002}, abstract = {Based on a marginal value approach, we derive a nonlinear expression for evolutionarily stable (ES) dispersal rates in a metapopulation with global dispersal. For the general case of density-dependent population growth, our analysis shows that individual dispersal rates should decrease with patch capacity and-beyond a certain threshold-increase with population density. We performed a number of spatially explicit, individual-based simulation experiments to test these predictions and to explore further the relevance of variation in the rate of population increase, density dependence, environmental fluctuations and dispersal mortality on the evolution of dispersal rates. They confirm the predictions of our analytical approach. In addition, they show that dispersal rates in metapopulations mostly depend on dispersal mortality and inter-patch variation in population density. The latter is dominantly driven by environmental fluctuations and the rate of population increase. These conclusions are not altered by the introduction of neighbourhood dispersal. With patch capacities in the order of 100 individuals, kin competition seems to be of negligible importance for ES dispersal rates except when overall dispersal rates are low.}, subject = {Metapopulation}, language = {en} } @article{PoethkeHovestadtMitesser2003, author = {Poethke, Hans-Joachim and Hovestadt, Thomas and Mitesser, Oliver}, title = {Local extinction and the evolution of dispersal rates: Causes and correlations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47718}, year = {2003}, abstract = {We present the results of individual-based simulation experiments on the evolution of dispersal rates of organisms living in metapopulations. We find conflicting results regarding the relationship between local extinction rate and evolutionarily stable (ES) dispersal rate depending on which principal mechanism causes extinction: if extinction is caused by environmental catastrophes eradicating local populations, we observe a positive correlation between extinction and ES dispersal rate; if extinction is a consequence of stochastic local dynamics and environmental fluctuations, the correlation becomes ambiguous; and in cases where extinction is caused by dispersal mortality, a negative correlation between local extinction rate and ES dispersal rate emerges. We conclude that extinction rate, which both affects and is affected by dispersal rates, is not an ideal predictor for optimal dispersal rates.}, subject = {Ausbreitung}, language = {en} } @article{GrosHovestadtPoethke2006, author = {Gros, Andreas and Hovestadt, Thomas and Poethke, Hans Joachim}, title = {Evolution of local adaptions in dispersal strategies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45406}, year = {2006}, abstract = {The optimal probability and distance of dispersal largely depend on the risk to end up in unsuitable habitat. This risk is highest close to the habitat's edge and consequently, optimal dispersal probability and distance should decline towards the habitat's border. This selection should lead to the emergence of spatial gradients in dispersal strategies. However, gene flow caused by dispersal itself is counteracting local adaptation. Using an individual based model we investigate the evolution of local adaptations of dispersal probability and distance within a single, circular, habitat patch. We compare evolved dispersal probabilities and distances for six different dispersal kernels (two negative exponential kernels, two skewed kernels, nearest neighbour dispersal and global dispersal) in patches of different size. For all kernels a positive correlation between patch size and dispersal probability emerges. However, a minimum patch size is necessary to allow for local adaptation of dispersal strategies within patches. Beyond this minimum patch area the difference in mean dispersal distance between center and edge increases linearly with patch radius, but the intensity of local adaptation depends on the dispersal kernel. Except for global and nearest neighbour dispersal, the evolved spatial pattern are qualitatively similar for both, mean dispersal probability and distance. We conclude, that inspite of the gene-flow originating from dispersal local adaptation of dispersal strategies is possible if a habitat is of sufficient size. This presumably holds for any realistic type of dispersal kernel.}, subject = {Ausbreitung}, language = {en} } @article{PoethkePfenningHovestadt2007, author = {Poethke, Hans J. and Pfenning, Brenda and Hovestadt, Thomas}, title = {The relative contribution of individual and kin selection to the evolution of density-dependent dispersal rates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48225}, year = {2007}, abstract = {Questions: What are the relative contributions of kin selection and individual selection to the evolution of dispersal rates in fragmented landscapes? How do environmental parameters influence the relative contributions of both evolutionary forces? Features of the model: Individual-based simulation model of a metapopulation. Logistic local growth dynamics and density-dependent dispersal. An optional shuffling algorithm allows the continuous destruction of any genetic structure in the metapopulation. Ranges of key variables: Depending on dispersal mortality (0.05-0.4) and the strength of environmental fluctuations, mean dispersal probability varied between 0.05 and 0.5. Conclusions: For local population sizes of 100 individuals, kin selection alone could account for dispersal probabilities of up to 0.1. It may result in a ten-fold increase of optimal dispersal rates compared with those predicted on the basis of individual selection alone. Such a substantial contribution of kin selection to dispersal is restricted to cases where the overall dispersal probabilities are small (textless 0.1). In the latter case, as much as 30\% of the total fitness of dispersing individuals could arise from the increased reproduction of kin left in the natal patch.}, language = {en} } @article{HovestadtMitesserElmesetal.2007, author = {Hovestadt, Thomas and Mitesser, Oliver and Elmes, Graham and Thomas, Jeremy A. and Hochberg, Michael E.}, title = {An Evolutionarily Stable Strategy model for the evolution of dimorphic development in the butterfly Maculinea rebeli, a social parasite of Myrmica Ant Colonies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48165}, year = {2007}, abstract = {Caterpillars of the butterfly Maculinea rebeli develop as parasites inside ant colonies. In intensively studied French populations, about 25\% of caterpillars mature within 1 year (fast-developing larvae [FDL]) and the others after 2 years (slow-developing larvae [SDL]); all available evidence indicates that this ratio is under the control of egg-laying females. We present an analytical model to predict the evolutionarily stable fraction of FDL (pESS). The model accounts for added winter mortality of SDL, general and kin competition among caterpillars, a competitive advantage of SDL over newly entering FDL (priority effect), and the avoidance of renewed infection of ant nests by butterflies in the coming season (segregation). We come to the following conclusions: (1) all factors listed above can promote the evolution of delayed development; (2) kin competition and segregation stabilize pESS near 0.5; and (3) a priority effect is the only mechanism potentially selecting for. However, given the empirical data, pESS is predicted to fall closer to 0.5 than to the 0.25 that has been observed. In this particular system, bet hedging cannot explain why more than 50\% of larvae postpone growth. Presumably, other fitness benefits for SDL, for example, higher fertility or longevity, also contribute to the evolution of delayed development. The model presented here may be of general applicability for systems where maturing individuals compete in small subgroups.}, language = {en} } @article{GrosHovestadtPoethke2008, author = {Gros, Andreas and Hovestadt, Thomas and Poethke, Hans Joachim}, title = {Evolution of sex-biased dispersal : the role of sex-specific dispersal costs, demographic stochasticity, and inbreeding}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48705}, year = {2008}, abstract = {Abstract: Inbreeding avoidance and asymmetric competition over resources have both been identified as factors favoring the evolution of sex-biased dispersal. It has also been recognized that sex-specific costs of dispersal would select for sex-biased dispersal, but there is little quantitative information on this aspect. In this paper we explore (i) the quantitative relationship between cost-asymmetry and a bias in dispersal, (ii) the influence of demographic stochasticity on this effect, and (iii) how inbreeding and cost-asymmetry interact in their effect on sex-specific dispersal. We adjust an existing analytical model to account for sex-specific costs of dispersal. Based on numerical calculations we predict a severe bias in dispersal already for small differences in dispersal costs. We corroborate these predictions in individual-based simulations, but show that demographic stochasticity generally leads to more balanced dispersal. In combination with inbreeding, cost asymmetries will usually determine which of the two sexes becomes the more dispersive.}, language = {en} } @article{BonteHovestadtPoethke2008, author = {Bonte, Dries and Hovestadt, Thomas and Poethke, Hans-Joachim}, title = {Male-killing endosymbionts: influence of environmental conditions on persistance of host metapopulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45344}, year = {2008}, abstract = {Background: Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because of the reproductive manipulation, we expect them to have an effect on the evolution of host dispersal rates. In addition, male killing endosymbionts are expected to approach fixation when fitness of infected individuals is larger than that of uninfected ones and when transmission from mother to offspring is nearly perfect. They then vanish as the host population crashes. High observed infection rates and among-population variation in natural systems can consequently not be explained if defense mechanisms are absent and when transmission efficiency is perfect. Results: By simulating the host-endosymbiont dynamics in an individual-based metapopulation model we show that male killing endosymbionts increase host dispersal rates. No fitness compensations were built into the model for male killing endosymbionts, but they spread as a group beneficial trait. Host and parasite populations face extinction under panmictic conditions, i.e. conditions that favor the evolution of high dispersal in hosts. On the other hand, deterministic 'curing' (only parasite goes extinct) can occur under conditions of low dispersal, e.g. under low environmental stochasticity and high dispersal mortality. However, high and stable infection rates can be maintained in metapopulations over a considerable spectrum of conditions favoring intermediate levels of dispersal in the host. Conclusion: Male killing endosymbionts without explicit fitness compensation spread as a group selected trait into a metapopulation. Emergent feedbacks through increased evolutionary stable dispersal rates provide an alternative explanation for both, the high male-killing endosymbiont infection rates and the high among-population variation in local infection rates reported for some natural systems.}, subject = {Metapopulation}, language = {en} } @article{GrosPoethkeHovestadt2009, author = {Gros, Andreas and Poethke, Hans Joachim and Hovestadt, Thomas}, title = {Sex-specific spatio-temporal variability in reproductive success promotes the evolution of sex-biased dispersal}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48711}, year = {2009}, abstract = {Abstract: Inbreeding depression, asymmetries in costs or benefits of dispersal, and the mating system have been identified as potential factors underlying the evolution of sex-biased dispersal. We use individual-based simulations to explore how the mating system and demographic stochasticity influence the evolution of sex-specific dispersal in a metapopulation with females competing over breeding sites, and males over mating opportunities. Comparison of simulation results for random mating with those for a harem system (locally, a single male sires all offspring) reveal that even extreme variance in local male reproductive success (extreme male competition) does not induce male-biased dispersal. The latter evolves if the between-parch variance in reproductive success is larger for males than females. This can emerge due to demographic stochasticity if the habitat patches are small. More generally, members of a group of individuals experiencing higher spatio-temporal variance in fitness expectations may evolve to disperse with greater probability than others.}, language = {en} } @article{BonteHovestadtPoethke2009, author = {Bonte, Dries and Hovestadt, Thomas and Poethke, Hans Joachim}, title = {Sex-specific dispersal and evolutionary rescue in metapopulations infected by male killing endosymbionts}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45351}, year = {2009}, abstract = {Background: Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because the resulting change in sex ratio is expected to affect the evolution of sex-specific dispersal, we investigated under which environmental conditions strong sex-biased dispersal would emerge, and how this would affect host and endosymbiont metapopulation persistence. Results: We simulated host-endosymbiont metapopulation dynamics in an individual-based model, in which dispersal rates are allowed to evolve independently for the two sexes. Prominent male-biased dispersal emerges under conditions of low environmental stochasticity and high dispersal mortality. By applying a reshuffling algorithm, we show that kin-competition is a major driver of this evolutionary pattern because of the high within-population relatedness of males compared to those of females. Moreover, the evolution of sex-specific dispersal rescues metapopulations from extinction by (i) reducing endosymbiont fixation rates and (ii) by enhancing the extinction of endosymbionts within metapopulations that are characterized by low environmental stochasticity. Conclusion: Male killing endosymbionts induce the evolution of sex-specific dispersal, with prominent male-biased dispersal under conditions of low environmental stochasticity and high dispersal mortality. This male-biased dispersal emerges from stronger kin-competition in males compared to females and induces an evolutionary rescue mechanism.}, subject = {Metapopulation}, language = {en} }