@article{MaerzKurlbaumRocheLancasteretal.2021, author = {M{\"a}rz, Juliane and Kurlbaum, Max and Roche-Lancaster, Oisin and Deutschbein, Timo and Peitzsch, Mirko and Prehn, Cornelia and Weismann, Dirk and Robledo, Mercedes and Adamski, Jerzy and Fassnacht, Martin and Kunz, Meik and Kroiss, Matthias}, title = {Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors}, series = {Frontiers in Endocrinology}, volume = {12}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2021.722656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245710}, year = {2021}, abstract = {Context Pheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet. Objective Evaluation of quantitative metabolomics as a diagnostic tool for PPGL. Design Targeted metabolomics by liquid chromatography-tandem mass spectrometry of plasma specimens and statistical modeling using ML-based feature selection approaches in a clinically well characterized cohort study. Patients Prospectively enrolled patients (n=36, 17 female) from the Prospective Monoamine-producing Tumor Study (PMT) with hormonally active PPGL and 36 matched controls in whom PPGL was rigorously excluded. Results Among 188 measured metabolites, only without considering false discovery rate, 4 exhibited statistically significant differences between patients with PPGL and controls (histidine p=0.004, threonine p=0.008, lyso PC a C28:0 p=0.044, sum of hexoses p=0.018). Weak, but significant correlations for histidine, threonine and lyso PC a C28:0 with total urine catecholamine levels were identified. Only the sum of hexoses (reflecting glucose) showed significant correlations with plasma metanephrines. By using ML-based feature selection approaches, we identified diagnostic signatures which all exhibited low accuracy and sensitivity. The best predictive value (sensitivity 87.5\%, accuracy 67.3\%) was obtained by using Gradient Boosting Machine Modelling. Conclusions The diabetogenic effect of catecholamine excess dominates the plasma metabolome in PPGL patients. While curative surgery for PPGL led to normalization of catecholamine-induced alterations of metabolomics in individual patients, plasma metabolomics are not useful for diagnostic purposes, most likely due to inter-individual variability.}, language = {en} } @article{ReelReelErlicetal.2022, author = {Reel, Smarti and Reel, Parminder S. and Erlic, Zoran and Amar, Laurence and Pecori, Alessio and Larsen, Casper K. and Tetti, Martina and Pamporaki, Christina and Prehn, Cornelia and Adamski, Jerzy and Prejbisz, Aleksander and Ceccato, Filippo and Scaroni, Carla and Kroiss, Matthias and Dennedy, Michael C. and Deinum, Jaap and Eisenhofer, Graeme and Langton, Katharina and Mulatero, Paolo and Reincke, Martin and Rossi, Gian Paolo and Lenzini, Livia and Davies, Eleanor and Gimenez-Roqueplo, Anne-Paule and Assi{\´e}, Guillaume and Blanchard, Anne and Zennaro, Maria-Christina and Beuschlein, Felix and Jefferson, Emily R.}, title = {Predicting hypertension subtypes with machine learning using targeted metabolites and their ratios}, series = {Metabolites}, volume = {12}, journal = {Metabolites}, number = {8}, issn = {2218-1989}, doi = {10.3390/metabo12080755}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286161}, year = {2022}, abstract = {Hypertension is a major global health problem with high prevalence and complex associated health risks. Primary hypertension (PHT) is most common and the reasons behind primary hypertension are largely unknown. Endocrine hypertension (EHT) is another complex form of hypertension with an estimated prevalence varying from 3 to 20\% depending on the population studied. It occurs due to underlying conditions associated with hormonal excess mainly related to adrenal tumours and sub-categorised: primary aldosteronism (PA), Cushing's syndrome (CS), pheochromocytoma or functional paraganglioma (PPGL). Endocrine hypertension is often misdiagnosed as primary hypertension, causing delays in treatment for the underlying condition, reduced quality of life, and costly antihypertensive treatment that is often ineffective. This study systematically used targeted metabolomics and high-throughput machine learning methods to predict the key biomarkers in classifying and distinguishing the various subtypes of endocrine and primary hypertension. The trained models successfully classified CS from PHT and EHT from PHT with 92\% specificity on the test set. The most prominent targeted metabolites and metabolite ratios for hypertension identification for different disease comparisons were C18:1, C18:2, and Orn/Arg. Sex was identified as an important feature in CS vs. PHT classification.}, language = {en} }