@phdthesis{Reuter2023, author = {Reuter, Christian Steffen}, title = {Development of a tissue-engineered primary human skin infection model to study the pathogenesis of tsetse fly-transmitted African trypanosomes in mammalian skin}, doi = {10.25972/OPUS-25114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251147}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Many arthropods such as mosquitoes, ticks, bugs, and flies are vectors for the transmission of pathogenic parasites, bacteria, and viruses. Among these, the unicellular parasite Trypanosoma brucei (T. brucei) causes human and animal African trypanosomiases and is transmitted to the vertebrate host by the tsetse fly. In the fly, the parasite goes through a complex developmental cycle in the alimentary tract and salivary glands ending with the cellular differentiation into the metacyclic life cycle stage. An infection in the mammalian host begins when the fly takes a bloodmeal, thereby depositing the metacyclic form into the dermal skin layer. Within the dermis, the cell cycle-arrested metacyclic forms are activated, re-enter the cell cycle, and differentiate into proliferative trypanosomes, prior to dissemination throughout the host. Although T. brucei has been studied for decades, very little is known about the early events in the skin prior to systemic dissemination. The precise timing and the mechanisms controlling differentiation of the parasite in the skin continue to be elusive, as does the characterization of the proliferative skin-residing trypanosomes. Understanding the first steps of an infection is crucial for developing novel strategies to prevent disease establishment and its progression. A major shortcoming in the study of human African trypanosomiasis is the lack of suitable infection models that authentically mimic disease progression. In addition, the production of infectious metacyclic parasites requires tsetse flies, which are challenging to keep. Thus, although animal models - typically murine - have produced many insights into the pathogenicity of trypanosomes in the mammalian host, they were usually infected by needle injection into the peritoneal cavity or tail vein, bypassing the skin as the first entry point. Furthermore, animal models are not always predictive for the infection outcome in human patients. In addition, the relatively small number of metacyclic parasites deposited by the tsetse flies makes them difficult to trace, isolate, and study in animal hosts. The focus of this thesis was to develop and validate a reconstructed human skin equivalent as an infection model to study the development of naturally-transmitted metacyclic parasites of T. brucei in mammalian skin. The first part of this work describes the development and characterization of a primary human skin equivalent with improved mechanical properties. To achieve this, a computer-assisted compression system was designed and established. This system allowed the improvement of the mechanical stability of twelve collagen-based dermal equivalents in parallel through plastic compression, as evaluated by rheology. The improved dermal equivalents provided the basis for the generation of the skin equivalents and reduced their contraction and weight loss during tissue formation, achieving a high degree of standardization and reproducibility. The skin equivalents were characterized using immunohistochemical and histological techniques and recapitulated key anatomical, cellular, and functional aspects of native human skin. Furthermore, their cellular heterogeneity was examined using single-cell RNA sequencing - an approach which led to the identification of a remarkable repertoire of extracellular matrix-associated genes expressed by different cell subpopulations in the artificial skin. In addition, experimental conditions were established to allow tsetse flies to naturally infect the skin equivalents with trypanosomes. In the second part of the project, the development of the trypanosomes in the artificial skin was investigated in detail. This included the establishment of methods to successfully isolate skin-dwelling trypanosomes to determine their protein synthesis rate, cell cycle and metabolic status, morphology, and transcriptome. Microscopy techniques to study trypanosome motility and migration in the skin were also optimized. Upon deposition in the artificial skin by feeding tsetse, the metacyclic parasites were rapidly activated and established a proliferative population within one day. This process was accompanied by: (I) reactivation of protein synthesis; (II) re-entry into the cell cycle; (III) change in morphology; (IV) increased motility. Furthermore, these observations were linked to potentially underlying developmental mechanisms by applying single-cell parasite RNA sequencing at five different timepoints post-infection. After the initial proliferative phase, the tsetse-transmitted trypanosomes appeared to enter a reversible quiescence program in the skin. These quiescent skin-residing trypanosomes were characterized by very slow replication, a strongly reduced metabolism, and a transcriptome markedly different from that of the deposited metacyclic forms and the early proliferative trypanosomes. By mimicking the migration from the skin to the bloodstream, the quiescent phenotype could be reversed and the parasites returned to an active proliferating state. Given that previous work has identified the skin as an anatomical reservoir for T. brucei during disease, it is reasonable to assume that the quiescence program is an authentic facet of the parasite's behavior in an infected host. In summary, this work demonstrates that primary human skin equivalents offer a new and promising way to study vector-borne parasites under close-to-natural conditions as an alternative to animal experimentation. By choosing the natural transmission route - the bite of an infected tsetse fly - the early events of trypanosome infection have been detailed with unprecedented resolution. In addition, the evidence here for a quiescent, skin-residing trypanosome population may explain the persistence of T. brucei in the skin of aparasitemic and asymptomatic individuals. This could play an important role in maintaining an infection over long time periods.}, subject = {Trypanosoma brucei}, language = {en} } @phdthesis{Janzen2022, author = {Janzen, Dieter}, title = {Functional analysis of ion channels and neuronal networks in 2D and 3D \(in\) \(vitro\) cell culture models}, doi = {10.25972/OPUS-25170}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251700}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In the central nervous system, excitatory and inhibitory signal transduction processes are mediated by presynaptic release of neurotransmitters, which bind to postsynaptic receptors. Glycine receptors (GlyRs) and GABAA receptors (GABAARs) are ligand-gated ion channels that enable synaptic inhibition. One part of the present thesis elucidated the role of the GlyRα1 β8 β9 loop in receptor expression, localization, and function by means of amino acid substitutions at residue Q177. This residue is underlying a startle disease phenotype in the spontaneous mouse model shaky and affected homozygous animals are dying 4-6 weeks after birth. The residue is located in the β8 β9 loop and thus part of the signal transduction unit essential for proper ion channel function. Moreover, residue Q177 is involved in a hydrogen network important for ligand binding. We observed no difference in ion channel trafficking to the cellular membrane for GlyRα1Q177 variants. However, electrophysiological measurements demonstrated reduced glycine, taurine, and β alanine potency in comparison to the wildtype protein. Modeling revealed that some GlyRα1Q177 variants disrupt the hydrogen network around residue Q177. The largest alterations were observed for the Q177R variant, which displayed similar effects as the Q177K mutation present in shaky mice. Exchange with structurally related amino acids to the original glutamine preserved the hydrogen bond network. Our results underlined the importance of the GlyR β8 β9 loop for proper ion channel gating. GlyRs as well as GABAARs can be modulated by numerous allosteric substances. Recently, we focused on monoterpenes from plant extracts and showed positive allosteric modulation of GABAARs. Here, we focused on the effect of 11 sesquiterpenes and sesquiterpenoids (SQTs) on GABAARs. SQTs are compounds naturally occurring in plants. We tested SQTs of the volatile fractions of hop and chamomile, including their secondary metabolites generated during digestion. Using the patch-clamp technique on transfected cells and neurons, we were able to observe significant GABAAR modulation by some of the compounds analyzed. Furthermore, a possible binding mechanism of SQTs to the neurosteroid binding site of the GABAAR was revealed by modeling and docking studies. We successfully demonstrated GABAAR modulation by SQTs and their secondary metabolites. The second part of the thesis investigated three-dimensional (3D) in vitro cell culture models which are becoming more and more important in different part of natural sciences. The third dimension allows developing of complex models closer to the natural environment of cells, but also requires materials with mechanical and biological properties comparable to the native tissue of the encapsulated cells. This is especially challenging for 3D in vitro cultures of primary neurons and astrocytes as the brain is one of the softest tissues found in the body. Ultra-soft matrices that mimic the neuronal in vivo environment are difficult to handle. We have overcome these challenges using fiber scaffolds created by melt electrowriting to reinforce ultra-soft matrigel. Hence, the scaffolds enabled proper handling of the whole composites and thus structural and functional characterizations requiring movement of the composites to different experimental setups. Using these scaffold-matrigel composites, we successfully established methods necessary for the characterization of neuronal network formation. Before starting with neurons, a mouse fibroblast cell line was seeded in scaffold-matrigel composites and transfected with the GlyR. 3D cultured cells displayed high viability, could be immunocytochemically stained, and electrophysiologically analyzed. In a follow-up study, primary mouse cortical neurons in fiber-reinforced matrigel were grown for up to 21 days in vitro. Neurons displayed high viability, and quantification of neurite lengths and synapse density revealed a fully formed neuronal network already after 7 days in 3D culture. Calcium imaging and patch clamp experiments demonstrated spontaneous network activity, functional voltage-gated sodium channels as well as action potential firing. By combining ultra-soft hydrogels with fiber scaffolds, we successfully created a cell culture model suitable for future work in the context of cell-cell interactions between primary cells of the brain and tumor cells, which will help to elucidate the molecular pathology of aggressive brain tumors and possibly other disease mechanisms.}, subject = {Zellkultur}, language = {en} } @phdthesis{Goschenhofer2020, author = {Goschenhofer, Ulrich}, title = {Auswirkungen von FGF23 und Klotho auf lokale Mineralisierungsprozesse von Knochenzellen in 3D-Zellkulturen}, doi = {10.25972/OPUS-20045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200455}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Osteozyten stehen vermehrt im Fokus als wesentliche Regulatoren der Knochenmineralisierung. Das {\"a}hnlich einem neuronalen Netzwerk aufgebaute lakunokanalikul{\"a}re Netzwerk der Osteozyten breitet sich im Knochen in drei Ebenen aus. Es wurde in dieser Arbeit ein 3D-Kollagengel-Modell verwendet und dort die Osteoblasten- bzw. Osteozytenzelllinien MLO-A5 und MLO-Y4, sowie humane mesenchymale Stammzellen aus H{\"u}ftk{\"o}pfen eingebettet. Es wurden die optimalen Kulturbedingungen entwickelt und die Zellen {\"u}ber mehrere Wochen kultiviert, beobachtet und mit dem herk{\"o}mmlichen 2D-Kulturmodell verglichen. MLO-A5 und MLO-Y4 bilden die zelltypischen Zellforts{\"a}tze. Die Gele kontrahieren, wenn hMSC und MLO-A5 eingebettet sind, mit MLO-Y4 zeigt sich {\"u}ber den gesamten Kultivierungszeitraum keinerlei Kontraktion der Kollagengele. Die Zellen wurden zudem osteogen differenziert und mit FGF23 und Klotho stimuliert. Es ergaben sich erste Hinweise auf eine FGF23 / Klotho-abh{\"a}ngige Inhibierung der lokalen Mineralisierung in osteogen differenzierten MLO-A5. Es konnten einige osteogene Marker durch PCR und in den histologischen Schnitten mittels Antik{\"o}rperf{\"a}rbungen nachgewiesen werden, eindeutige Expressionsmuster und deren zeitliche Verl{\"a}ufe im Vergleich der osteogenen Differenzierungen und Zugabe von FGF23 und Klotho sind allerdings noch nicht identifizierbar und bed{\"u}rfen wom{\"o}glich h{\"o}herer Fallzahlen und weiterer Untersuchungsmethoden. Insgesamt gesehen erweist sich das System aber als einfach und mit niederschwellig erreichbaren Methoden und Materialien durchzuf{\"u}hren.}, subject = {Osteozyt}, language = {de} }