@phdthesis{Ojala2012, author = {Ojala, Antti}, title = {Merocyanine Dyes as Donor Materials in Vacuum-Deposited Organic Solar Cells: Insights into Structure-Property-Performance Relationships}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70073}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In this study, a double-donor concept is used to improve the performance of thermally evaporated merocyanine(s)/C60 bulk heterojunction (BHJ) solar cells. It is shown that the co-evaporation of two merocyanine dyes with absorption bands at ~ 500 nm (SW dye) and ~ 650 nm (LW dye), respectively, together with C60 fullerene results in an improvement of open-circuit voltage (VOC), short-circuit current (JSC) as well as total power conversion efficiency (PCE) compared to the best single-donor cell. The enhancement of JSC is attributed to a higher photon harvesting efficiency of the mixed-donor devices due to a better spectral coverage.}, subject = {Merocyanine}, language = {en} } @phdthesis{Buerckstuemmer2011, author = {B{\"u}rckst{\"u}mmer, Hannah}, title = {Merocyanine dyes for solution-processed organic bulk heterojunction solar cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66879}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The technology of organic photovoltaics offers the possibility of low-cost devices due to easy fabrication procedures and low material consumption and at the same time high flexibility concerning the applied substrates or design features such as the color palette. Owing to these benefits, this research field is highly active, being reflected by the continuously rising number of publications. Chapter 1 gives an extensive overview of a part of these reports, namely the field of solution-processed BHJ organic solar cells using small molecules as electron-donating materials. In the early years of this research area (2006-2008), well known hole transporting materials such as triphenylamine based chromophores, oligothiophenes and polyaromatic hydrocarbons were applied. However, many of these dyes lacked absorption at longer wavelengths and were therefore limited in their light harvesting qualities. Later, chromophores based on low band gap systems consisting of electron-donating and electron-accepting units showing internal charge transfer overcame this handicap. Today, donor-substituted diketopyrrolopyrroles (D-A-D chromophores), squaraines (D-A-D chromophores) and acceptor substituted oligothiophenes (A-D-A chromophores) are among the most promising dyes for small molecule based organic solar cells with PCEs of 4-5\%. This work is based on the findings of the groups of W{\"u}rthner and Meerholz, which tested merocyanine dyes for the first time in organic BHJ solar cells.4 According to the B{\"a}ssler theory85, the high dipolarity of these dyes should hamper the charge transport, but the obtained first results with PCE of 1.7\% proved the potenital of this class of dyes for this application. Merocyanine dyes offer the advantages of facile synthesis and purification, high tinctorial strength and monodispersity. Additionally, the electronic structure of the dyes, namely the absorption as well as the electrochemical properties, can be adjusted by using the right combination of donor and acceptor units. For these reasons, this class of dye is highly interesting for the application in organic solar cells. It was the aim of the thesis to build more knowledge about the potential and limitations of merocyanines in BHJ photovoltaic devices. By screening a variety of donor and acceptor groups a comprehensive data set both for the molecular materials as well as for the respective solar devices was generated and analyzed. As one focus, the arrangement of the chromophores in the solid state was investigated to gain insight about the packing in the solar cells and its relevance for the performance of the latter. To do so, X-ray single crystal analyses were performed for selected molecules. By means of correlations between molecular properties and the characteristics of the corresponding solar cells, several design rules to generate efficient chromophores for organic photovoltaics were developed. The different donor and acceptor moieties applied in this work are depicted in the following ...}, subject = {organische Solarzelle}, language = {en} } @phdthesis{Lohr2008, author = {Lohr, Andreas}, title = {Self-Assembly of Merocyanines : Thermodynamic and Kinetic Insights into the Formation of Well-Defined Dye Aggregates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28964}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The present thesis demonstrates the potential of dipolar aggregation of merocyanine dyes as novel directional and specific supramolecular binding motif for the creation of more elaborate supramolecular architectures beyond simple dimers. Furthermore, the self-assembly studies into bis(merocyanine) nanorods gave new insights into the kinetics of morphogenesis in supramolecular aggregates.}, subject = {Supramolekulare Chemie}, language = {en} }