@article{GeissingerSadlerRothetal.2010, author = {Geissinger, Eva and Sadler, Petra and Roth, Sabine and Grieb, Tina and Puppe, Bernhard and Mueller, Nora and Reimer, Peter and Vetter-Kauczok, Claudia S. and Wenzel, Joerg and Bonzheim, Irina and Ruediger, Thomas and Mueller-Hermelink, Hans Konrad and Rosenwald, Andreas}, title = {Disturbed expression of the T-cell receptor/CD3 complex and associated signaling molecules in CD30(+) T-cell lymphoproliferations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68179}, year = {2010}, abstract = {Background CD30+ T-cell lymphoproliferations comprise a spectrum of clinically heterogeneous entities, including systemic anaplastic large cell lymphomas (ALK- and ALK+) and primary cutaneous CD30+ T-cell lymphoproliferative disorders. While all these entities are characterized by proliferation of highly atypical, anaplastic CD30+ T cells, the expression of T-cell specific antigens in the tumor cells is not consistently detectable. Design and Methods We evaluated biopsies from 19 patients with primary cutaneous CD30+ lymphoproliferative disorders, 38 with ALK- and 33 with ALK+ systemic anaplastic large cell lymphoma. The biopsies were examined for the expression of T-cell receptoraβ/CD3 complex (CD3γ, δ, ε, ζ), transcription factors regulating T-cell receptor expression (ATF1, ATF2, TCF-1, TCF-1a/LEF-1, Ets1), and molecules of T-cell receptor-associated signaling cascades (Lck, ZAP-70, LAT, bcl-10, Carma1, NFATc1, c-Jun, c-Fos, Syk) using immunohistochemistry. Results In comparison to the pattern in 20 peripheral T-cell lymphomas, not otherwise specified, we detected a highly disturbed expression of the T-cell receptor/CD3 complex, TCF-1, TCF- 1a/LEF-1, Lck, ZAP-70, LAT, NFATc1, c-Jun, c-Fos and Syk in most of the systemic anaplastic large cell lymphomas. In addition, primary cutaneous CD30+ lymphoproliferative disorders showed such a similar expression pattern to that of systemic anaplastic large cell lymphomas, that none of the markers we investigated can reliably distinguish between these CD30+ T-cell lymphoproliferations. Conclusions Severely altered expression of the T-cell receptor/CD3 complex, T-cell receptor-associated transcription factors and signal transduction molecules is a common characteristic of systemic and cutaneous CD30+ lymphoproliferations, although the clinical behavior of these entities is very different. Since peripheral T-cell lymphomas, not otherwise specified retain the full expression program required for functioning T-cell receptor signaling, the differential expression of a subset of these markers might be of diagnostic utility in distinguishing peripheral T-cell lymphomas, not otherwise specified from the entire group of CD30+ lymphoproliferations.}, subject = {Medizin}, language = {en} } @phdthesis{RinconOrozco2007, author = {Rinc{\´o}n Orozco, Bladimiro}, title = {TCR and CO-receptors mediated activation of V gamma 9V delta 2 T cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24902}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {A small percentage (1-5\%) of the blood lymphocytes expresses alternative T-cell antigen receptor that uses g and d TCR rearranging genes. A subset of them expresses the Vg9Vd2 TCR. Those cells respond to self-nonpeptide and foreign antigens presented by unknown antigen-presenting molecules. Vg9Vd2 T cells also express Toll-like receptors and natural killer receptors that allow them to respond to other nonpeptide microbial components or to alterations in the expression of stress cell surface ligands such as NKG2D ligands. Vg9Vd2 T cells frequently are regulated by the expression of activating and/or inhibitory NKRs (iNKRs) that can fine-tune their activation threshold and the activating NKG2D receptor is one of the most studied until now. NKG2D, a C-type lectin receptor directed against MICA/MICB and UL16-binding protein (ULBP) molecules, have been reported a powerful co-stimulus for Ag-mediated activation of CD8 and Vg9Vd2 T cells. Indeed, NKG2D is recruited within the Vg9Vd2 TCR immunological synapse and enhances recognition by Vg9Vd2 T cells of Mycobacteria-infected DCs and various MICA/MICB or ULBP hemopoietic and non-hemopoietic tumors. The level of NKG2D is upregulated by inflammatory cytokines (e.g. IL-15), and NKG2D ligands are induced after a physical or genotoxic stress and/or along infection by intracellular pathogens. Therefore, NKG2D is a key stress sensor that strongly enhances recognition of altered or infected self by human gd T cells. Recent progress in the field supports the idea that gd T cells fulfill a role in the innate and adaptative immune response in different way of the conventional ab T cells. We demonstrated direct activation of Vg9Vd2 T cells by NKG2D ligation through the association with DAP10 adapter molecules and independently of TCR-Ag recognition, similar to the NKG2D-mediated activation of NK cells. Culture of peripherical blood mononuclear cells with immobilized NKG2D mAb or NKG2D ligand MICA induces up-regulation of CD69 and CD25 in NK and Vg9Vd2 T cells but not in CD8 T cells. Additionally, the ligation of NKG2D induces in Vg9Vd2 T cells the up-regulation of molecules typical for antigenpresenting cells, such as co-stimulator molecules (CD86) antigen presenting molecules (CD1a, HLA-DR), adhesion molecules (CD54), and activation molecules (CD69). Furthermore, NKG2D ligation in Vg9Vd2 T cells induces the production of cytokines such as TNF-a and chemokines such as, MIP-1a, but cannot induce the production of cytokines such as IL-6 or IFN-g and chemokines such as RANTES, MCP-1 and GM-CSF. In addition, NKG2D triggers the activation of the cytolytic machinery as efficient as CD3 stimulation as shown by measurement of the release of granules with esterase activity (BLT assay), perforin and the up-regulation of CD107a on the surface of Vg9Vd2 T cells. This NKG2D dependent cytolysis has been confirmed using purified Vg9Vd2 T cells, which kill MICA-transduced RMA cells but not the control cells. The TCR independence and NKG2D dependence of this killing is supported by mAb inhibition experiment. Finally, DAP 10, which mediates NKG2D signaling of human NK cells, is found in resting and activated Vg9Vd2 T cells. Moreover, data of intracellular signaling studies suggest an important role of Scr kinases in the NKG2D mediated killing and involvement of DAP-10-PI3K and PLCg 1 pathways as mayor proteins implicated in target cell lysis, and shows remarkable difference with the TCR signaling. The identification of these similarities in NKG2D function between NK and Vg9Vd2 T cells may be of interest for development of new strategies for Vg9Vd2 T cell-based immunotherapy in certain types of cancer and help to understand Vg9Vd2 T cell function in general.}, subject = {TCR}, language = {en} } @phdthesis{Eichler2005, author = {Eichler, Lars}, title = {Effects of desialyation on TCR-cross-linking and antigen sensitivity of CD8 positive T lymphocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-19391}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {The featured experiments focus on changes in T cell membrane glycosylation as a possible means of controlling TCR cross-linking. Taking the long known fact that activated T cells show decreased levels of surface sialic acid as a starting point, differences in ligand binding and cellular reaction upon in vitro stimulation were investigated in na{\"i}ve, activated and enzymatically desialyated CD8+, 2C TCR transgenic mouse lymphocytes. To detect differences in ligand binding lymphocytes were incubated with various concentrations of fluorescently labeled, soluble MHC/Ig fusion proteins until equilibrium was reached. Without previous washing, cells were analyzed by flow cytometry, determined MCF values were normalized to the plateau and fit to a mathematical model of equilibrium binding of divalent ligands to monomorphic receptors (Perelson 1984). Parameters derived from the model fit of binding data show, that neuraminidase treatment of T cells was sufficient to mimic a partially activated phenotype, showing enhanced TCR cross-linking. Enhanced TCR cross-linking was found to be dependent on the presence of CD8, as neuraminidase treatment of DN cells lead to decreased cross-linking. To elucidate the physiological relevance of desialyation induced increases in TCR cross-linking early tyrosine phosphorylation events and proliferative response upon in vitro stimulation of T cells were investigated. Both were found enhanced in neuraminidase treated cells, as compared to native cells. In conclusion the featured experiments suggest a role of surface sialic acid in controlling TCR cross-linking on na{\"i}ve and activated T cells.}, language = {en} }