@article{BaeMuellerFoersteretal.2022, author = {Bae, Soyeon and M{\"u}ller, J{\"o}rg and F{\"o}rster, Bernhard and Hilmers, Torben and Hochrein, Sophia and Jacobs, Martin and Leroy, Benjamin M. L. and Pretzsch, Hans and Weisser, Wolfgang W. and Mitesser, Oliver}, title = {Tracking the temporal dynamics of insect defoliation by high-resolution radar satellite data}, series = {Methods in Ecology and Evolution}, volume = {13}, journal = {Methods in Ecology and Evolution}, number = {1}, doi = {10.1111/2041-210X.13726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258222}, pages = {121-132}, year = {2022}, abstract = {Quantifying tree defoliation by insects over large areas is a major challenge in forest management, but it is essential in ecosystem assessments of disturbance and resistance against herbivory. However, the trajectory from leaf-flush to insect defoliation to refoliation in broadleaf trees is highly variable. Its tracking requires high temporal- and spatial-resolution data, particularly in fragmented forests. In a unique replicated field experiment manipulating gypsy moth Lymantria dispar densities in mixed-oak forests, we examined the utility of publicly accessible satellite-borne radar (Sentinel-1) to track the fine-scale temporal trajectory of defoliation. The ratio of backscatter intensity between two polarizations from radar data of the growing season constituted a canopy development index (CDI) and a normalized CDI (NCDI), which were validated by optical (Sentinel-2) and terrestrial laser scanning (TLS) data as well by intensive caterpillar sampling from canopy fogging. The CDI and NCDI strongly correlated with optical and TLS data (Spearman's ρ = 0.79 and 0.84, respectively). The ΔNCDII\(_{Defoliation(A-C)}\) significantly explained caterpillar abundance (R\(^{2}\) = 0.52). The NCDI at critical timesteps and ΔNCDI related to defoliation and refoliation well discriminated between heavily and lightly defoliated forests. We demonstrate that the high spatial and temporal resolution and the cloud independence of Sentinel-1 radar potentially enable spatially unrestricted measurements of the highly dynamic canopy herbivory. This can help monitor insect pests, improve the prediction of outbreaks and facilitate the monitoring of forest disturbance, one of the high priority Essential Biodiversity Variables, in the near future.}, language = {en} } @article{BaeHeidrichLevicketal.2020, author = {Bae, Soyeon and Heidrich, Lea and Levick, Shaun R. and Gossner, Martin M. and Seibold, Sebastian and Weisser, Wolfgang W. and Magdon, Paul and Serebryanyk, Alla and B{\"a}ssler, Claus and Sch{\"a}fer, Deborah and Schulze, Ernst-Detlef and Doerfler, Inken and M{\"u}ller, J{\"o}rg and Jung, Kirsten and Heurich, Marco and Fischer, Markus and Roth, Nicolas and Schall, Peter and Boch, Steffen and W{\"o}llauer, Stephan and Renner, Swen C. and M{\"u}ller, J{\"o}rg}, title = {Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi-taxa and multi-scale approach}, series = {Diversity and Distribution}, volume = {27}, journal = {Diversity and Distribution}, number = {3}, doi = {10.1111/ddi.13204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236117}, pages = {439-453}, year = {2020}, abstract = {Aim: Despite increasing interest in β-diversity, that is the spatial and temporal turnover of species, the mechanisms underlying species turnover at different spatial scales are not fully understood, although they likely differ among different functional groups. We investigated the relative importance of dispersal limitations and the environmental filtering caused by vegetation for local, multi-taxa forest communities differing in their dispersal ability, trophic position and body size. Location: Temperate forests in five regions across Germany. Methods: In the inter-region analysis, the independent and shared effects of the regional spatial structure (regional species pool), landscape spatial structure (dispersal limitation) and environmental factors on species turnover were quantified with a 1-ha grain across 11 functional groups in up to 495 plots by variation partitioning. In the intra-region analysis, the relative importance of three environmental factors related to vegetation (herb and tree layer composition and forest physiognomy) and spatial structure for species turnover was determined. Results: In the inter-region analysis, over half of the explained variation in community composition (23\% of the total explained 35\%) was explained by the shared effects of several factors, indicative of spatially structured environmental filtering. Among the independent effects, environmental factors were the strongest on average over 11 groups, but the importance of landscape spatial structure increased for less dispersive functional groups. In the intra-region analysis, the independent effect of plant species composition had a stronger influence on species turnover than forest physiognomy, but the relative importance of the latter increased with increasing trophic position and body size. Main conclusions: Our study revealed that the mechanisms structuring assemblage composition are associated with the traits of functional groups. Hence, conservation frameworks targeting biodiversity of multiple groups should cover both environmental and biogeographical gradients. Within regions, forest management can enhance β-diversity particularly by diversifying tree species composition and forest physiognomy.}, language = {en} }