@article{VellmerHartlebFraderaSolaetal.2022, author = {Vellmer, Tim and Hartleb, Laura and Fradera Sola, Albert and Kramer, Susanne and Meyer-Natus, Elisabeth and Butter, Falk and Janzen, Christian J.}, title = {A novel SNF2 ATPase complex in Trypanosoma brucei with a role in H2A.Z-mediated chromatin remodelling}, series = {PLoS Pathogens}, volume = {18}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1010514}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301372}, year = {2022}, abstract = {A cascade of histone acetylation events with subsequent incorporation of a histone H2A variant plays an essential part in transcription regulation in various model organisms. A key player in this cascade is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant H2A.Z. Transcriptional regulation of polycistronic transcription units in the unicellular parasite Trypanosoma brucei has been shown to be highly dependent on acetylation of H2A.Z, which is mediated by the histone-acetyltransferase HAT2. The chromatin remodelling complex which mediates H2A.Z incorporation is not known and an SWR1 orthologue in trypanosomes has not yet been reported. In this study, we identified and characterised an SWR1-like remodeller complex in T. brucei that is responsible for Pol II-dependent transcriptional regulation. Bioinformatic analysis of potential SNF2 DEAD/Box helicases, the key component of SWR1 complexes, identified a 1211 amino acids-long protein that exhibits key structural characteristics of the SWR1 subfamily. Systematic protein-protein interaction analysis revealed the existence of a novel complex exhibiting key features of an SWR1-like chromatin remodeller. RNAi-mediated depletion of the ATPase subunit of this complex resulted in a significant reduction of H2A.Z incorporation at transcription start sites and a subsequent decrease of steady-state mRNA levels. Furthermore, depletion of SWR1 and RNA-polymerase II (Pol II) caused massive chromatin condensation. The potential function of several proteins associated with the SWR1-like complex and with HAT2, the key factor of H2A.Z incorporation, is discussed.}, language = {en} } @article{GoosDejungJanzenetal.2017, author = {Goos, Carina and Dejung, Mario and Janzen, Christian J. and Butter, Falk and Kramer, Susanne}, title = {The nuclear proteome of Trypanosoma brucei}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0181884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158572}, pages = {e0181884}, year = {2017}, abstract = {Trypanosoma brucei is a protozoan flagellate that is transmitted by tsetse flies into the mammalian bloodstream. The parasite has a huge impact on human health both directly by causing African sleeping sickness and indirectly, by infecting domestic cattle. The biology of trypanosomes involves some highly unusual, nuclear-localised processes. These include polycistronic transcription without classical promoters initiated from regions defined by histone variants, trans-splicing of all transcripts to the exon of a spliced leader RNA, transcription of some very abundant proteins by RNA polymerase I and antigenic variation, a switch in expression of the cell surface protein variants that allows the parasite to resist the immune system of its mammalian host. Here, we provide the nuclear proteome of procyclic Trypanosoma brucei, the stage that resides within the tsetse fly midgut. We have performed quantitative label-free mass spectrometry to score 764 significantly nuclear enriched proteins in comparison to whole cell lysates. A comparison with proteomes of several experimentally characterised nuclear and non-nuclear structures and pathways confirmed the high quality of the dataset: the proteome contains about 80\% of all nuclear proteins and less than 2\% false positives. Using motif enrichment, we found the amino acid sequence KRxR present in a large number of nuclear proteins. KRxR is a sub-motif of a classical eukaryotic monopartite nuclear localisation signal and could be responsible for nuclear localization of proteins in Kinetoplastida species. As a proof of principle, we have confirmed the nuclear localisation of six proteins with previously unknown localisation by expressing eYFP fusion proteins. While proteome data of several T. brucei organelles have been published, our nuclear proteome closes an important gap in knowledge to study trypanosome biology, in particular nuclear-related processes.}, language = {en} }