@article{FrankeBieberStolletal.2021, author = {Franke, Maximilian and Bieber, Michael and Stoll, Guido and Schuhmann, Michael Klaus}, title = {Validity and Efficacy of Methods to Define Blood Brain Barrier Integrity in Experimental Ischemic Strokes: A Comparison of Albumin Western Blot, IgG Western Blot and Albumin Immunofluorescence}, series = {Methods and Protocols}, volume = {4}, journal = {Methods and Protocols}, number = {1}, issn = {2409-9279}, doi = {10.3390/mps4010023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234214}, year = {2021}, abstract = {The clinical and preclinical research of ischemic strokes (IS) is becoming increasingly comprehensive, especially with the emerging evidence of complex thrombotic and inflammatory interactions. Within these, the blood brain barrier (BBB) plays an important role in regulating the cellular interactions at the vascular interface and is therefore the object of many IS-related questions. Consequently, valid, economic and responsible methods to define BBB integrity are necessary. Therefore, we compared the three ex-vivo setups albumin Western blot (WB), IgG WB and albumin intensity measurement (AIM) with regard to validity as well as temporal and economic efficacy. While the informative value of the three methods correlated significantly, the efficacy of the IgG WB dominated.}, language = {en} } @article{SchuhmannBieberFrankeetal.2021, author = {Schuhmann, Michael K. and Bieber, Michael and Franke, Maximilian and Kollikowski, Alexander M. and Stegner, David and Heinze, Katrin G. and Nieswandt, Bernhard and Pham, Mirko and Stoll, Guido}, title = {Platelets and lymphocytes drive progressive penumbral tissue loss during middle cerebral artery occlusion in mice}, series = {Journal of Neuroinflammation}, volume = {18}, journal = {Journal of Neuroinflammation}, number = {1}, doi = {10.1186/s12974-021-02095-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259172}, pages = {46}, year = {2021}, abstract = {Background In acute ischemic stroke, cessation of blood flow causes immediate tissue necrosis within the center of the ischemic brain region accompanied by functional failure in the surrounding brain tissue designated the penumbra. The penumbra can be salvaged by timely thrombolysis/thrombectomy, the only available acute stroke treatment to date, but is progressively destroyed by the expansion of infarction. The underlying mechanisms of progressive infarction are not fully understood. Methods To address mechanisms, mice underwent filament occlusion of the middle cerebral artery (MCAO) for up to 4 h. Infarct development was compared between mice treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab) or rat immunoglobulin G (IgG) Fab as control treatment. Moreover, Rag1\(^{-/-}\) mice lacking T-cells underwent the same procedures. Infarct volumes as well as the local inflammatory response were determined during vessel occlusion. Results We show that blocking of the platelet adhesion receptor, glycoprotein (GP) Ibα in mice, delays cerebral infarct progression already during occlusion and thus before recanalization/reperfusion. This therapeutic effect was accompanied by decreased T-cell infiltration, particularly at the infarct border zone, which during occlusion is supplied by collateral blood flow. Accordingly, mice lacking T-cells were likewise protected from infarct progression under occlusion. Conclusions Progressive brain infarction can be delayed by blocking detrimental lymphocyte/platelet responses already during occlusion paving the way for ultra-early treatment strategies in hyper-acute stroke before recanalization.}, language = {en} }