@article{VedderLeidingerSarmentoCabral2021, author = {Vedder, Daniel and Leidinger, Ludwig and Sarmento Cabral, Juliano}, title = {Propagule pressure and an invasion syndrome determine invasion success in a plant community model}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {23}, doi = {10.1002/ece3.8348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259107}, pages = {17106-17116}, year = {2021}, abstract = {The success of species invasions depends on multiple factors, including propagule pressure, disturbance, productivity, and the traits of native and non-native species. While the importance of many of these determinants has already been investigated in relative isolation, they are rarely studied in combination. Here, we address this shortcoming by exploring the effect of the above-listed factors on the success of invasions using an individual-based mechanistic model. This approach enables us to explicitly control environmental factors (temperature as surrogate for productivity, disturbance, and propagule pressure) as well as to monitor whole-community trait distributions of environmental adaptation, mass, and dispersal abilities. We simulated introductions of plant individuals to an oceanic island to assess which factors and species traits contribute to invasion success. We found that the most influential factors were higher propagule pressure and a particular set of traits. This invasion trait syndrome was characterized by a relative similarity in functional traits of invasive to native species, while invasive species had on average higher environmental adaptation, higher body mass, and increased dispersal distances, that is, had greater competitive and dispersive abilities. Our results highlight the importance in management practice of reducing the import of alien species, especially those that display this trait syndrome and come from similar habitats as those being managed.}, language = {en} } @article{LeidingerVedderCabral2021, author = {Leidinger, Ludwig and Vedder, Daniel and Cabral, Juliano Sarmento}, title = {Temporal environmental variation may impose differential selection on both genomic and ecological traits}, series = {Oikos}, volume = {130}, journal = {Oikos}, number = {7}, doi = {10.1111/oik.08172}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238945}, pages = {1100 -- 1115}, year = {2021}, abstract = {The response of populations and species to changing conditions determines how community composition will change functionally, including via trait shifts. Selection from standing variation has been suggested to be more efficient than acquiring new mutations. Yet, studies on community trait composition and trait selection largely focus on phenotypic variation in ecological traits, whereas the underlying genomic traits remain understudied. Using a genome-explicit, niche- and individual-based model, we address the potential interactions between genomic and ecological traits shaping communities under an environmental selective forcing, namely temporal positively autocorrelated environmental fluctuation. In this model, all ecological traits are explicitly coded by the genome. For our experiments, we initialized 90 replicate communities, each with ca 350 initial species, characterized by random genomic and ecological trait combinations, on a 2D spatially explicit landscape with two orthogonal gradients (temperature and resource use). We exposed each community to two contrasting scenarios: without (i.e. static environments) and with temporal variation. We then analyzed emerging compositions of both genomic and ecological traits at the community, population and genomic levels. Communities in variable environments were species poorer than in static environments, and populations more abundant, whereas genomes had lower genetic linkage, mean genetic variation and a non-significant tendency towards higher numbers of genes. The surviving genomes (i.e. those selected by variable environments) coded for enhanced environmental tolerance and smaller biomass, which resulted in faster life cycles and thus also in increased potential for evolutionary rescue. Under temporal environmental variation, larger, less linked genomes retained more variation in mean dispersal ability at the population level than at genomic level, whereas the opposite trend emerged for biomass. Our results provide clues to how sexually-reproducing diploid plant communities might react to variable environments and highlights the importance of genomic traits and their interaction with ecological traits for eco-evolutionary responses to changing climates.}, language = {en} }