@article{PozziBolzoniBiellaetal.2023, author = {Pozzi, Nicol{\´o} Gabriele and Bolzoni, Francesco and Biella, Gabriele Eliseo Mario and Pezzoli, Gianni and Ip, Chi Wang and Volkmann, Jens and Cavallari, Paolo and Asan, Esther and Isaias, Ioannis Ugo}, title = {Brain noradrenergic innervation supports the development of Parkinson's tremor: a study in a reserpinized rat model}, series = {Cells}, volume = {12}, journal = {Cells}, number = {21}, issn = {2073-4409}, doi = {10.3390/cells12212529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357721}, year = {2023}, abstract = {The pathophysiology of tremor in Parkinson's disease (PD) is evolving towards a complex alteration to monoaminergic innervation, and increasing evidence suggests a key role of the locus coeruleus noradrenergic system (LC-NA). However, the difficulties in imaging LC-NA in patients challenge its direct investigation. To this end, we studied the development of tremor in a reserpinized rat model of PD, with or without a selective lesioning of LC-NA innervation with the neurotoxin DSP-4. Eight male rats (Sprague Dawley) received DSP-4 (50 mg/kg) two weeks prior to reserpine injection (10 mg/kg) (DR-group), while seven male animals received only reserpine treatment (R-group). Tremor, rigidity, hypokinesia, postural flexion and postural immobility were scored before and after 20, 40, 60, 80, 120 and 180 min of reserpine injection. Tremor was assessed visually and with accelerometers. The injection of DSP-4 induced a severe reduction in LC-NA terminal axons (DR-group: 0.024 ± 0.01 vs. R-group: 0.27 ± 0.04 axons/um\(^2\), p < 0.001) and was associated with significantly less tremor, as compared to the R-group (peak tremor score, DR-group: 0.5 ± 0.8 vs. R-group: 1.6 ± 0.5; p < 0.01). Kinematic measurement confirmed the clinical data (tremor consistency (\% of tremor during 180 s recording), DR-group: 37.9 ± 35.8 vs. R-group: 69.3 ± 29.6; p < 0.05). Akinetic-rigid symptoms did not differ between the DR- and R-groups. Our results provide preliminary causal evidence for a critical role of LC-NA innervation in the development of PD tremor and foster the development of targeted therapies for PD patients.}, language = {en} } @article{PalmisanoBeccariaHaufeetal.2022, author = {Palmisano, Chiara and Beccaria, Laura and Haufe, Stefan and Volkmann, Jens and Pezzoli, Gianni and Isaias, Ioannis U.}, title = {Gait initiation impairment in patients with Parkinson's disease and freezing of gait}, series = {Bioengineering}, volume = {9}, journal = {Bioengineering}, number = {11}, issn = {2306-5354}, doi = {10.3390/bioengineering9110639}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297579}, year = {2022}, abstract = {Freezing of gait (FOG) is a sudden episodic inability to produce effective stepping despite the intention to walk. It typically occurs during gait initiation (GI) or modulation and may lead to falls. We studied the anticipatory postural adjustments (imbalance, unloading, and stepping phase) at GI in 23 patients with Parkinson's disease (PD) and FOG (PDF), 20 patients with PD and no previous history of FOG (PDNF), and 23 healthy controls (HCs). Patients performed the task when off dopaminergic medications. The center of pressure (CoP) displacement and velocity during imbalance showed significant impairment in both PDNF and PDF, more prominent in the latter patients. Several measurements were specifically impaired in PDF patients, especially the CoP displacement along the anteroposterior axis during unloading. The pattern of segmental center of mass (SCoM) movements did not show differences between groups. The standing postural profile preceding GI did not correlate with outcome measurements. We have shown impaired motor programming at GI in Parkinsonian patients. The more prominent deterioration of unloading in PDF patients might suggest impaired processing and integration of somatosensory information subserving GI. The unaltered temporal movement sequencing of SCoM might indicate some compensatory cerebellar mechanisms triggering time-locked models of body mechanics in PD.}, language = {en} } @article{IsaiasBrumbergPozzietal.2020, author = {Isaias, Ioannis U. and Brumberg, Joachim and Pozzi, Nicol{\´o} G. and Palmisano, Chiara and Canessa, Andrea and Marotta, Giogio and Volkmann, Jens and Pezzoli, Gianni}, title = {Brain metabolic alterations herald falls in patients with Parkinson's disease}, series = {Annals of Clinical and Translational Neurology}, volume = {7}, journal = {Annals of Clinical and Translational Neurology}, number = {4}, doi = {10.1002/acn3.51013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235982}, pages = {579-583}, year = {2020}, abstract = {Pathophysiological understanding of gait and balance disorders in Parkinson's disease is insufficient and late recognition of fall risk limits efficacious followup to prevent or delay falls. We show a distinctive reduction of glucose metabolism in the left posterior parietal cortex, with increased metabolic activity in the cerebellum, in parkinsonian patients 6-8 months before their first fall episode. Falls in Parkinson's disease may arise from altered cortical processing of body spatial orientation, possibly predicted by abnormal cortical metabolism.}, language = {en} } @article{PalmisanoBrandtVissanietal.2020, author = {Palmisano, Chiara and Brandt, Gregor and Vissani, Matteo and Pozzi, Nicol{\´o} G. and Canessa, Andrea and Brumberg, Joachim and Marotta, Giorgio and Volkmann, Jens and Mazzoni, Alberto and Pezzoli, Gianni and Frigo, Carlo A. and Isaias, Ioannis U.}, title = {Gait Initiation in Parkinson's Disease: Impact of Dopamine Depletion and Initial Stance Condition}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {8}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2020.00137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200801}, year = {2020}, abstract = {Postural instability, in particular at gait initiation (GI), and resulting falls are a major determinant of poor quality of life in subjects with Parkinson's disease (PD). Still, the contribution of the basal ganglia and dopamine on the feedforward postural control associated with this motor task is poorly known. In addition, the influence of anthropometric measures (AM) and initial stance condition on GI has never been consistently assessed. The biomechanical resultants of anticipatory postural adjustments contributing to GI [imbalance (IMB), unloading (UNL), and stepping phase) were studied in 26 unmedicated subjects with idiopathic PD and in 27 healthy subjects. A subset of 13 patients was analyzed under standardized medication conditions and the striatal dopaminergic innervation was studied in 22 patients using FP-CIT and SPECT. People with PD showed a significant reduction in center of pressure (CoP) displacement and velocity during the IMB phase, reduced first step length and velocity, and decreased velocity and acceleration of the center of mass (CoM) at toe off of the stance foot. All these measurements correlated with the dopaminergic innervation of the putamen and substantially improved with levodopa. These results were not influenced by anthropometric parameters or by the initial stance condition. In contrast, most of the measurements of the UNL phase were influenced by the foot placement and did not correlate with putaminal dopaminergic innervation. Our results suggest a significant role of dopamine and the putamen particularly in the elaboration of the IMB phase of anticipatory postural adjustments and in the execution of the first step. The basal ganglia circuitry may contribute to defining the optimal referent body configuration for a proper initiation of gait and possibly gait adaptation to the environment.}, language = {en} } @article{BrumbergKuestersAlMomanietal.2017, author = {Brumberg, Joachim and K{\"u}sters, Sebastian and Al-Momani, Ehab and Marotta, Giorgio and Cosgrove, Kelly P. and van Dyck, Christopher H. and Herrmann, Ken and Homola, Gy{\"o}rgy A. and Pezzoli, Gianni and Buck, Andreas K. and Volkmann, Jens and Samnick, Samuel and Isaias, Ioannis U.}, title = {Cholinergic activity and levodopa-induced dyskinesia: a multitracer molecular imaging study}, series = {Annals of Clinical and Translational Neurology}, volume = {4}, journal = {Annals of Clinical and Translational Neurology}, number = {9}, doi = {10.1002/acn3.438}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170406}, pages = {632-639}, year = {2017}, abstract = {Objective: To investigate the association between levodopa-induced dyskinesias and striatal cholinergic activity in patients with Parkinson's disease. Methods: This study included 13 Parkinson's disease patients with peak-of-dose levodopa-induced dyskinesias, 12 nondyskinetic patients, and 12 healthy controls. Participants underwent 5-[\(^{123}\)I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine single-photon emission computed tomography, a marker of nicotinic acetylcholine receptors, [\(^{123}\)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computed tomography, to measure dopamine reuptake transporter density and 2-[\(^{18}\)F]fluoro-2-deoxyglucose positron emission tomography to assess regional cerebral metabolic activity. Striatal binding potentials, uptake values at basal ganglia structures, and correlations with clinical variables were analyzed. Results: Density of nicotinic acetylcholine receptors in the caudate nucleus of dyskinetic subjects was similar to that of healthy controls and significantly higher to that of nondyskinetic patients, in particular, contralaterally to the clinically most affected side. Interpretation: Our findings support the hypothesis that the expression of dyskinesia may be related to cholinergic neuronal excitability in a dopaminergic-depleted striatum. Cholinergic signaling would play a role in maintaining striatal dopaminergic responsiveness, possibly defining disease phenotype and progression.}, language = {en} } @article{IsaiasTrujilloSummersetal.2016, author = {Isaias, Ioannis U. and Trujillo, Paula and Summers, Paul and Marotta, Giorgio and Mainardi, Luca and Pezzoli, Gianni and Zecca, Luigi and Costa, Antonella}, title = {Neuromelanin Imaging and Dopaminergic Loss in Parkinson's Disease}, series = {Frontiers in Aging Neuroscience}, volume = {8}, journal = {Frontiers in Aging Neuroscience}, number = {196}, doi = {10.3389/fnagi.2016.00196}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164046}, year = {2016}, abstract = {Parkinson's disease (PD) is a progressive neurodegenerative disorder in which the major pathologic substrate is a loss of dopaminergic neurons from the substantia nigra. Our main objective was to determine the correspondence between changes in the substantia nigra, evident in neuromelanin and iron sensitive magnetic resonance imaging (MRI), and dopaminergic striatal innervation loss in patients with PD. Eighteen patients and 18 healthy control subjects were included in the study. Using neuromelanin-MRI, we measured the volume of the substantia nigra and the contrast-to-noise-ratio between substantia nigra and a background region. The apparent transverse relaxation rate and magnetic susceptibility of the substantia nigra were calculated from dual-echo MRI. Striatal dopaminergic innervation was measured as density of dopamine transporter (DAT) by means of single-photon emission computed tomography and [123I] N-ω-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) tropane. Patients showed a reduced volume of the substantia nigra and contrast-to-noise-ratio and both positively correlated with the corresponding striatal DAT density. The apparent transverse relaxation rate and magnetic susceptibility values of the substantia nigra did not differ between patients and healthy controls. The best predictor of DAT reduction was the volume of the substantia nigra. Clinical and imaging correlations were also investigated for the locus coeruleus. Our results suggest that neuromelanin-MRI can be used for quantifying substantia nigra pathology in PD where it closely correlates with dopaminergic striatal innervation loss. Longitudinal studies should further explore the role of Neuromelanin-MRI as an imaging biomarker of PD, especially for subjects at risk of developing the disease.}, language = {en} } @article{DipaolaPavanCattaneoetal.2016, author = {Dipaola, Mariangela and Pavan, Esteban E. and Cattaneo, Andrea and Frazzitta, Giuseppe and Pezzoli, Gianni and Cavallari, Paolo and Frigo, Carlo A. and Isaias, Ioannis U.}, title = {Mechanical Energy Recovery during Walking in Patients with Parkinson Disease}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0156420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179739}, year = {2016}, abstract = {The mechanisms of mechanical energy recovery during gait have been thoroughly investigated in healthy subjects, but never described in patients with Parkinson disease (PD). The aim of this study was to investigate whether such mechanisms are preserved in PD patients despite an altered pattern of locomotion. We consecutively enrolled 23 PD patients (mean age 64±9 years) with bilateral symptoms (H\&Y ≥II) if able to walk unassisted in medication-off condition (overnight suspension of all dopaminergic drugs). Ten healthy subjects (mean age 62±3 years) walked both at their 'preferred' and 'slow' speeds, to match the whole range of PD velocities. Kinematic data were recorded by means of an optoelectronic motion analyzer. For each stride we computed spatio-temporal parameters, time-course and range of motion (ROM) of hip, knee and ankle joint angles. We also measured kinetic (Wk), potential (W\(_{p}\)), total (W\(_{totCM}\)) energy variations and the energy recovery index (ER). Along with PD progression, we found a significant correlation of W\(_{totCM}\) and W\(_{p}\) with knee ROM and in particular with knee extension in terminal stance phase. W\(_{k}\) and ER were instead mainly related to gait velocity. In PD subjects, the reduction of knee ROM significantly diminished both W\(_{p}\) and W\(_{totCM}\). Rehabilitation treatments should possibly integrate passive and active mobilization of knee to prevent a reduction of gait-related energetic components.}, language = {en} } @article{CanesiGiordanoLazzarietal.2016, author = {Canesi, Margherita and Giordano, Rosaria and Lazzari, Lorenza and Isalberti, Maurizio and Isaias, Ioannis Ugo and Benti, Riccardo and Rampini, Paolo and Marotta, Giorgio and Colombo, Aurora and Cereda, Emanuele and Dipaola, Mariangela and Montemurro, Tiziana and Vigano, Mariele and Budelli, Silvia and Montelatici, Elisa and Lavazza, Cristiana and Cortelezzi, Agostino and Pezzoli, Gianni}, title = {Finding a new therapeutic approach for no-option Parkinsonisms: mesenchymal stromal cells for progressive supranuclear palsy}, series = {Journal of Translational Medicine}, volume = {14}, journal = {Journal of Translational Medicine}, number = {127}, doi = {10.1186/s12967-016-0880-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165725}, pages = {1-11}, year = {2016}, abstract = {Background: The trophic, anti-apoptotic and regenerative effects of bone marrow mesenchymal stromal cells (MSC) may reduce neuronal cell loss in neurodegenerative disorders. Methods: We used MSC as a novel candidate therapeutic tool in a pilot phase-I study for patients affected by progressive supranuclear palsy (PSP), a rare, severe and no-option form of Parkinsonism. Five patients received the cells by infusion into the cerebral arteries. Effects were assessed using the best available motor function rating scales (UPDRS, Hoehn and Yahr, PSP rating scale), as well as neuropsychological assessments, gait analysis and brain imaging before and after cell administration. Results: One year after cell infusion, all treated patients were alive, except one, who died 9 months after the infusion for reasons not related to cell administration or to disease progression (accidental fall). In all treated patients motor function rating scales remained stable for at least six-months during the one-year follow-up. Conclusions: We have demonstrated for the first time that MSC administration is feasible in subjects with PSP. In these patients, in whom deterioration of motor function is invariably rapid, we recorded clinical stabilization for at least 6 months. These encouraging results pave the way to the next randomized, placebo-controlled phase-II study that will definitively provide information on the efficacy of this innovative approach.}, language = {en} } @article{CanessaPozziArnulfoetal.2016, author = {Canessa, Andrea and Pozzi, Nicol{\`o} G. and Arnulfo, Gabriele and Brumberg, Joachim and Reich, Martin M. and Pezzoli, Gianni and Ghilardi, Maria F. and Matthies, Cordula and Steigerwald, Frank and Volkmann, Jens and Isaias, Ioannis U.}, title = {Striatal Dopaminergic Innervation Regulates Subthalamic Beta-Oscillations and Cortical-Subcortical Coupling during Movements: Preliminary Evidence in Subjects with Parkinson's Disease}, series = {Frontiers in Human Neuroscience}, volume = {10}, journal = {Frontiers in Human Neuroscience}, number = {611}, doi = {10.3389/fnhum.2016.00611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164061}, year = {2016}, abstract = {Activation of the basal ganglia has been shown during the preparation and execution of movement. However, the functional interaction of cortical and subcortical brain areas during movement and the relative contribution of dopaminergic striatal innervation remains unclear. We recorded local field potential (LFP) activity from the subthalamic nucleus (STN) and high-density electroencephalography (EEG) signals in four patients with Parkinson's disease (PD) off dopaminergic medication during a multi-joint motor task performed with their dominant and non-dominant hand. Recordings were performed by means of a fully-implantable deep brain stimulation (DBS) device at 4 months after surgery. Three patients also performed a single-photon computed tomography (SPECT) with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT) to assess striatal dopaminergic innervation. Unilateral movement execution led to event-related desynchronization (ERD) followed by a rebound after movement termination event-related synchronization (ERS) of oscillatory beta activity in the STN and primary sensorimotor cortex of both hemispheres. Dopamine deficiency directly influenced movement-related beta-modulation, with greater beta-suppression in the most dopamine-depleted hemisphere for both ipsi- and contralateral hand movements. Cortical-subcortical, but not interhemispheric subcortical coherencies were modulated by movement and influenced by striatal dopaminergic innervation, being stronger in the most dopamine-depleted hemisphere. The data are consistent with a role of dopamine in shielding subcortical structures from an excessive cortical entrapment and cross-hemispheric coupling, thus allowing fine-tuning of movement.}, language = {en} } @article{MencacciIsaiasReichetal.2014, author = {Mencacci, Niccol{\´o} E. and Isaias, Ioannis U. and Reich, Martin M. and Ganos, Christos and Plagnol, Vincent and Polke, James M. and Bras, Jose and Hersheson, Joshua and Stamelou, Maria and Pittman, Alan M. and Noyce, Alastair J. and Mok, Kin Y. and Opladen, Thomas and Kunstmann, Erdmute and Hodecker, Sybille and M{\"u}nchau, Alexander and Volkmann, Jens and Samnick, Samuel and Sidle, Katie and Nanji, Tina and Sweeney, Mary G. and Houlden, Henry and Batla, Amit and Zecchinelli, Anna L. and Pezzoli, Gianni and Marotta, Giorgio and Lees, Andrew and Alegria, Paulo and Krack, Paul and Cormier-Dequaire, Florence and Lesage, Suzanne and Brice, Alexis and Heutink, Peter and Gasser, Thomas and Lubbe, Steven J. and Morris, Huw R. and Taba, Pille and Koks, Sulev and Majounie, Elisa and Gibbs, J. Raphael and Singleton, Andrew and Hardy, John and Klebe, Stephan and Bhatia, Kailash P. and Wood, Nicholas W.}, title = {Parkinson's disease in GTP cyclohydrolase 1 mutation carriers}, series = {Brain}, volume = {137}, journal = {Brain}, number = {9}, doi = {10.1093/brain/awu179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121268}, pages = {2480-92}, year = {2014}, abstract = {GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([(123)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson's disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson's disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson's disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher's exact test P-value 0.0001) in cases (10/1318 = 0.75\%) than in controls (6/5935 = 0.1\%; odds ratio 7.5; 95\% confidence interval 2.4-25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson's disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson's disease.}, language = {en} }