@article{BrieseSaalBauernschubertLueningschroeretal.2020, author = {Briese, Michael and Saal-Bauernschubert, Lena and L{\"u}ningschr{\"o}r, Patrick and Moradi, Mehri and Dombert, Benjamin and Surrey, Verena and Appenzeller, Silke and Deng, Chunchu and Jablonka, Sibylle and Sendtner, Michael}, title = {Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function}, series = {Acta Neuropathologica Communications}, volume = {8}, journal = {Acta Neuropathologica Communications}, doi = {10.1186/s40478-020-00987-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230322}, year = {2020}, abstract = {Protein inclusions containing the RNA-binding protein TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis and other neurodegenerative disorders. The loss of TDP-43 function that is associated with these inclusions affects post-transcriptional processing of RNAs in multiple ways including pre-mRNA splicing, nucleocytoplasmic transport, modulation of mRNA stability and translation. In contrast, less is known about the role of TDP-43 in axonal RNA metabolism in motoneurons. Here we show that depletion of Tdp-43 in primary motoneurons affects axon growth. This defect is accompanied by subcellular transcriptome alterations in the axonal and somatodendritic compartment. The axonal localization of transcripts encoding components of the cytoskeleton, the translational machinery and transcripts involved in mitochondrial energy metabolism were particularly affected by loss of Tdp-43. Accordingly, we observed reduced protein synthesis and disturbed mitochondrial functions in axons of Tdp-43-depleted motoneurons. Treatment with nicotinamide rescued the axon growth defect associated with loss of Tdp-43. These results show that Tdp-43 depletion in motoneurons affects several pathways integral to axon health indicating that loss of TDP-43 function could thus make a major contribution to axonal pathomechanisms in ALS.}, language = {en} } @phdthesis{Surrey2020, author = {Surrey, Verena}, title = {Identification of affected cellular targets, mechanisms and signaling pathways in a mouse model for spinal muscular atrophy with respiratory distress type 1 (SMARD1)}, doi = {10.25972/OPUS-17638}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176386}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal monogenic motoneuron disease in children with unknown etiology caused by mutations in the immunoglobulin μ-binding protein 2 (IGHMBP2) gene coding for DNA/RNA ATPase/helicase. Despite detailed knowledge of the underlying genetic changes, the cellular mechanisms leading to this disease are not well understood. In the Nmd2J ("neuromuscular disorder") mouse, the mouse model for the juvenile form of SMARD1 patients, in which similar pathological features as diaphragmatic paralysis and skeletal muscle atrophy are observed. Ex vivo studies in Nmd2J mice showed that loss of the motor axon precedes atrophy of the gastrocnemius muscle and does not correlate with neurotransmission defects in the motor endplate. The already described independent myogenic anomalies in the diaphragm and heart of the Nmd2J mouse raised the question whether spinal motoneuron degeneration develops cell autonomously. Ighmbp2 is predominantly localized in the cytoplasm and seems to bind to ribosomes and polysomes, suggesting a role in mRNA metabolism. In this Ph.D. thesis, morphological and functional analyses of isolated Ighmbp2-deficient (Ighmbp2-def.) motoneurons were performed to answer the question whether the SMARD1 phenotype results from dysregulation of protein biosynthesis. Ighmbp2-deficient motoneurons show only negligible morphological alterations with respect to a slight increase in axonal branches. This observation is consistent with only minor changes of transcriptome based on RNA sequencing data from Ighmbp2-deficient motoneurons. Only the mRNA of fibroblast growth factor receptor 1 (Fgfr1) showed significant up-regulation in Ighmbp2-deficient motoneurons. Furthermore, no global aberrations at the translational level could be detected using pulsed SILAC (Stable Isotope Labeling by Amino acids in cell culture), AHA (L-azidohomoalanine) labeling and SUnSET (SUrface SEnsing of Translation) methods. However, a reduced β-actin protein level was observed at the growth cones of Ighmbp2-deficient motoneurons, which was accompanied with a reduced level of Imp1 protein, a known β-actin mRNA interactor. Live-cell imaging studies using fluorescence recovery after photobleaching (FRAP) showed translational down-regulation of eGFPmyr-β-actin 3'UTR mRNA in the growth cones and the cell bodies, although the amount of β-actin mRNA and the total protein amount in Ighmbp2-deficient motoneurons showed no aberrations. This compartment-specific reduction of β-actin protein occurred independently of a non-existent direct IGHMBPF2 binding to β-actin mRNA. Fgfr1, which was upregulated on the RNA level, did not show an increased protein amount in Ighmbp2-deficient motoneurons, whereas a reduced amount could be detected. Interestingly, a correlation could be found between the reduced amount of the Imp1 protein and the increased Fgfr1 mRNA, since the IMP1 protein binds the FGFR1 mRNA and thus could influence the transport and translation of FGFR1 mRNA. In summary, all data suggest that Ighmbp2 deficiency leads to a local but modest disturbance of protein biosynthesis, which might contribute to the motoneuron defects of SMARD1.}, subject = {Spinale Muskelatrophie}, language = {en} }