@article{TraubGrondeyGassenmaieretal.2022, author = {Traub, Jan and Grondey, Katja and Gassenmaier, Tobias and Schmitt, Dominik and Fette, Georg and Frantz, Stefan and Boivin-Jahns, Val{\´e}rie and Jahns, Roland and St{\"o}rk, Stefan and Stoll, Guido and Reiter, Theresa and Hofmann, Ulrich and Weber, Martin S. and Frey, Anna}, title = {Sustained increase in serum glial fibrillary acidic protein after first ST-elevation myocardial infarction}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms231810304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288261}, year = {2022}, abstract = {Acute ischemic cardiac injury predisposes one to cognitive impairment, dementia, and depression. Pathophysiologically, recent positron emission tomography data suggest astroglial activation after experimental myocardial infarction (MI). We analyzed peripheral surrogate markers of glial (and neuronal) damage serially within 12 months after the first ST-elevation MI (STEMI). Serum levels of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were quantified using ultra-sensitive molecular immunoassays. Sufficient biomaterial was available from 45 STEMI patients (aged 28 to 78 years, median 56 years, 11\% female). The median (quartiles) of GFAP was 63.8 (47.0, 89.9) pg/mL and of NfL 10.6 (7.2, 14.8) pg/mL at study entry 0-4 days after STEMI. GFAP after STEMI increased in the first 3 months, with a median change of +7.8 (0.4, 19.4) pg/mL (p = 0.007). It remained elevated without further relevant increases after 6 months (+11.7 (0.6, 23.5) pg/mL; p = 0.015), and 12 months (+10.3 (1.5, 22.7) pg/mL; p = 0.010) compared to the baseline. Larger relative infarction size was associated with a higher increase in GFAP (ρ = 0.41; p = 0.009). In contrast, NfL remained unaltered in the course of one year. Our findings support the idea of central nervous system involvement after MI, with GFAP as a potential peripheral biomarker of chronic glial damage as one pathophysiologic pathway.}, language = {en} } @article{TraubHusseiniWeber2021, author = {Traub, Jan and Husseini, Leila and Weber, Martin S.}, title = {B cells and antibodies as targets of therapeutic intervention in neuromyelitis optica spectrum disorders}, series = {Pharmaceuticals}, volume = {14}, journal = {Pharmaceuticals}, number = {1}, issn = {1424-8247}, doi = {10.3390/ph14010037}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222957}, year = {2021}, abstract = {The first description of neuromyelitis optica by Eug{\`e}ne Devic and Fernand Gault dates back to the 19th century, but only the discovery of aquaporin-4 autoantibodies in a major subset of affected patients in 2004 led to a fundamentally revised disease concept: Neuromyelits optica spectrum disorders (NMOSD) are now considered autoantibody-mediated autoimmune diseases, bringing the pivotal pathogenetic role of B cells and plasma cells into focus. Not long ago, there was no approved medication for this deleterious disease and off-label therapies were the only treatment options for affected patients. Within the last years, there has been a tremendous development of novel therapies with diverse treatment strategies: immunosuppression, B cell depletion, complement factor antagonism and interleukin-6 receptor blockage were shown to be effective and promising therapeutic interventions. This has led to the long-expected official approval of eculizumab in 2019 and inebilizumab in 2020. In this article, we review current pathogenetic concepts in NMOSD with a focus on the role of B cells and autoantibodies as major contributors to the propagation of these diseases. Lastly, by highlighting promising experimental and future treatment options, we aim to round up the current state of knowledge on the therapeutic arsenal in NMOSD.}, language = {en} }