@phdthesis{GarciaArguinzonis2003, author = {Garc{\´i}a Arguinzonis, Ma{\´i}sa In{\´e}s}, title = {Analysis of signal transduction pathways and the cytoskeleton in VASP-deficient cell lines and mouse models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6195}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {The mammalian Vasodilator Stimulated Phosphoprotein (VASP) is a founding member of the Ena/VASP family of proteins that includes Drosophila Enabled (ena), the mammalian Ena homologue (Mena) and the Ena-VASP-like protein (Evl). VASP was initially discovered and characterized as a substrate for cGMP- and cAMP-dependent protein kinases (cGKs and cAKs). Ena/VASP proteins are involved in Actin-filament formation, plasma membrane protrusion, acceleration of Actin-based motility of Listeria and the establishment of cell-cell adhesion. Moreover, Ena/VASP proteins have been implicated as inhibitory factors in repulsive axon guidance and inhibition of plasma membrane activity and random motility in fibroblast. In order to study the physiological function of VASP, VASP-deficient mice had been generated in the laboratory by homologous recombination. VASP-/- mice showed hyperplasia of megakaryocytes in the bone marrow and spleen and a two-fold increase in thrombin- and collagen-induced platelet activation. To further investigate the cellular function of VASP, I established cardiac fibroblast cell lines derived from both wild type and VASP-/- mice. Both cell lines presented similar growth rates and normal contact dependent-growth inhibition but showed differences in morphology, migration and adhesion. Adherent VASP-/- cells, despite normal Mena and Evl expression levels, were highly spread. VASP-/- cells covered about twice the substrate surface area as wild type cells, while the cell volumes were unchanged. This shape difference suggests that VASP is involved in the regulation of spreading. Since the small GTPases Rac and Cdc 42 and their effector p21-activated kinase (Pak) are key regulators of lamellipodia formation and cell spreading, I analyzed this signalling pathway in VASP-/- cells stimulated with Platelet Derived Growth Factor-BB (PDGF-BB) or fetal calf serum. In wild type cells Rac and Pak were rapidly and transiently activated by PDGF or serum; however, in the absence of VASP both Rac and Pak activation was dramatically prolonged. The Rac/Pak pathway is known to play an essential role in cell motility. VASP deficient cells showed compromised migration and reorientation in a wound healing assay, probably due to enhanced Rac activity. The spreading phenotype, compromised migration and the effect observed on the Rac and Pak activities were reverted in VASP-/- cells stably transfected with full lenght human VASP, indicating a VASP dependent modulation of the Rac/Pak pathway and Rac/Pak regulated processes. Moreover, adhesion and detachment of VASP-deficient cells were significantly slower when compared to wild type cells. Preincubation of VASP+/+ cells with a cGMP analog accelerated adhesion. This acceleration did not take place in the VASP-/- cells, suggesting a VASP dependent effect. The second part of this work focused on VASP function in platelets. On the one hand I investigated the possibility of VASP-dependent Rac regulation in mouse platelets. Murine platelets are a good model for studying Rac regulation since they express high levels of VASP but not Mena/Evl and since VASP-deficient platelets show an increased platelet activation. Rac was activated by platelet agonists which was inhibited by preincubation with cGMP and cAMP analogs. Initial results which need to be extended showed that the cGMPcaused inhibition of Rac activation was VASP-dependent. Finally, in vivo platelet adhesion (platelet-vessel wall interactions) was studied using VASP-deficient mice. These studies demonstrated in-vivo that VASP down regulates platelet adhesion to the vascular wall under both physiological and pathophysiological conditions.}, subject = {Vasodilatator-stimuliertes Phosphoprotein}, language = {en} }