@phdthesis{Rumpel2024, author = {Rumpel, Matthias}, title = {Development of Components for Solid-State Batteries and their Characterization}, doi = {10.25972/OPUS-34715}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347154}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {This Ph.D. thesis has addressed several main issues in current ASSB research within four studies. Ceramic ASSBs are meant to enable the implementation of Li-metal anodes and high voltage cathode materials, which would increase energy density, power density, life time as well as safety aspects in comparison with commercially available liquid electrolyte LiBs. In this thesis, several scientific questions arising on the cathode side of ASSBs have been focused on. With respect to the target system of a ternary composite bulk cathode consisting of ceramic active material, ceramic SSE and an electrically conductive component, studies about the thermal stabilities of these components and their impact on the electrochemical performance have been conducted. Particulate bulk cathode composites have to fulfil electrochemical, chemical, mechanical and structural requirements in order to compete with commercial LiBs. Particularly, the production process requires high-temperature sintering to obtain firmly bonded contacts in order to maximize the electrochemically active area, charge transfer and ionic conduction. However, interdiffusion, intermixing and decomposition of the initial components during sintering result in low-performing ASSBs so far. These side reactions during high-temperature treatment have been investigated in order to gain a better understanding of these mechanisms and to enable a better controlling of the manufacturing process as well as to simplify the choice of material combinations. The first two parts of this thesis deal with the thermal stability of the ceramic SSE LATP in combination with various active materials and with the validation of a probable improvement of the sintering process due to liquid phase sintering of LATP by adding Li3PO4. In the third and fourth parts, the impact of interdiffusion, intermixing and decomposition on the electrochemical performance of TF-SSBs based on the active material LMO and the ceramic SSE Ga-LLZO has been investigated.}, subject = {Elektrochemie}, language = {en} } @phdthesis{Maier2024, author = {Maier, Matthias}, title = {Inorganic and Inorganic-Organic Hybrid Polymers Containing BN Units in the Main Chain}, doi = {10.25972/OPUS-35153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {π-Conjugated organic polymers have attracted tremendous attention in the last decades, and the interest in these materials is mainly driven by their applicability in next-generation electronic and optoelectronic devices (OLEDs, OFETs, photovoltaics). The partial or complete replacement of carbon atoms by main group elements in conjugated polymers can significantly change the characteristics and applications of these macromolecules. In this work, a class of inorganic polymers comprising a backbone of exclusively boron and nitrogen atoms (poly(iminoborane)s, PIBs) and their monodisperse oligomers is described. In addition, novel inorganic-organic hybrid polymers containing BN units in their polymer backbone were synthesized and characterized. In chapter 2.1, the development of catalytic B-N coupling routes for the controlled synthesis of macromolecular materials is described. While the reaction of an N-silyl-B-chloro-aminoborane with the electrophilic reagent trimethylsilyl triflate led to effective B-N coupling, the reaction with a silver(I) salt resulted in an intramolecular Cl/Me exchange between the boron and silicon centers. In chapter 2.2-2.4, the study of oligo- and poly(iminoborane)s is discussed. Monodisperse and cyclolinear oligo(iminoborane)s based on diazaborolidines with up to 7 boron and 8 nitrogen atoms were synthesized by successively extending the B-N main chain. However, the use of benzodiazaborolines only led to limited BN catenation. Furthermore, the redistribution processes resulting from the reaction of longer oligomers with non-stoichiometric amounts of (di)halogenated boranes is reported. In chapter 2.5-2.6, the synthesis of 1,2,5-azadiborolanes as building blocks for the synthesis of poly(iminoborane)s and inorganic-organic hybrid polymers is described. While the attempt to apply an azadiborolane with sterically demanding groups on the boron-bridging ethylene unit for the construction of PIB was unfeasible, it was successfully incorporated in inorganic-organic hybrid polymers. Photophysical studies indicated π-conjugation along the polymer chain. A first attempt to synthesize PIBs based on azadiborolanes with unsubstituted ethylene units showed promising results. In chapter 2.7-2.8, a comprehensive study of poly(arylene iminoborane)s, which are BN analogs of poly(arylene vinylene)s is described, and the properties of four polymers as well as twelve monodisperse oligomers were investigated. Photophysical investigations of the monomers, dimers and polymers showed a systematic bathochromic shift of the absorption maximum with increasing chain length and thiophene content. Based on TD-DFT calculations of the model oligomers, the lowest-energy absorption band could be assigned to HOMO to LUMO transitions with π-π* character. The oligo- and poly(arylene iminoborane)s showed only very weak to no emission in solution but they were emissive in the solid state. For four oligomers the aggregation induced emission (AIE) in a THF/water mixture was investigated and DLS studies confirmed the formation of nanoaggregates. In chapter 2.9, oligo- and polymerizations of sulfur-containing building blocks and subsequent pH-triggered degradation of the products is described. While a sulfilimine-containing oligomer could not be isolated, the sulfone-, sulfoximine-, and sulfoxide-containing molecular oligomers and polymers could be successfully synthesized by B=N or B-O bond formation reactions. The sulfur-containing building blocks were successfully released under acidic or basic conditions, which was confirmed by NMR spectroscopy and mass spectrometry.}, subject = {Anorganische Polymere}, language = {en} } @article{PhilippBertermannRadius2023, author = {Philipp, Michael S. M. and Bertermann, R{\"u}diger and Radius, Udo}, title = {Activation of Ge-H and Sn-H Bonds with N-Heterocyclic Carbenes and a Cyclic (Alkyl)(amino)carbene}, series = {Chemistry - A European Journal}, volume = {29}, journal = {Chemistry - A European Journal}, number = {3}, doi = {10.1002/chem.202202493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311929}, year = {2023}, abstract = {A study of the reactivity of several N-heterocyclic carbenes (NHCs) and the cyclic (alkyl)(amino)carbene 1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene (cAAC\(^{Me}\)) with the group 14 hydrides GeH2Mes2 and SnH2Me2 (Me=CH\(_{3}\), Mes=1,3,5-(CH\(_{3}\))\(_{3}\)C\(_{6}\)H\(_{2}\)) is presented. The reaction of GeH\(_{2}\)Mes\(_{2}\) with cAAC\(^{Me}\) led to the insertion of cAAC\(^{Me}\) into one Ge-H bond to give cAAC\(^{Me}\)H-GeHMes\(_{2}\) (1). If 1,3,4,5-tetramethyl-imidazolin-2-ylidene (Me\(_{2}\)Im\(^{Me}\)) was used as the carbene, NHC-mediated dehydrogenative coupling occurred, which led to the NHC-stabilized germylene Me\(_{2}\)Im\(^{Me}\)⋅GeMes\(_{2}\) (2). The reaction of SnH\(_{2}\)Me\(_{2}\) with cAAC\(^{Me}\) also afforded the insertion product cAAC\(^{Me}\)H-SnHMe\(_{2}\) (3), and reaction of two equivalents Me\(_{2}\)Im\(^{Me}\) with SnH\(_{2}\)Me\(_{2}\) gave the NHC-stabilized stannylene Me\(_{2}\)Im\(^{Me}\)⋅SnMe\(_{2}\) (4). If the sterically more demanding NHCs Me\(_{2}\)Im\(^{Me}\), 1,3-di-isopropyl-4,5-dimethyl-imidazolin-2-ylidene (iPr\(_{2}\)Im\(^{Me}\)) and 1,3-bis-(2,6-di-isopropylphenyl)-imidazolin-2-ylidene (Dipp\(_{2}\)Im) were employed, selective formation of cyclic oligomers (SnMe\(_{2}\))\(_{n}\) (5; n=5-8) in high yield was observed. These cyclic oligomers were also obtained from the controlled decomposition of cAAC\(^{Me}\)H-SnHMe\(_{2}\) (3).}, language = {en} } @article{CataldiRaschigGutmannetal.2023, author = {Cataldi, Eleonora and Raschig, Martina and Gutmann, Marcus and Geppert, Patrick T. and Ruopp, Matthias and Schock, Marvin and Gerwe, Hubert and Bertermann, R{\"u}diger and Meinel, Lorenz and Finze, Maik and Nowak-Kr{\´o}l, Agnieszka and Decker, Michael and L{\"u}hmann, Tessa}, title = {Amber Light Control of Peptide Secondary Structure by a Perfluoroaromatic Azobenzene Photoswitch}, series = {ChemBioChem}, volume = {24}, journal = {ChemBioChem}, number = {5}, doi = {10.1002/cbic.202200570}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312480}, year = {2023}, abstract = {The incorporation of photoswitches into the molecular structure of peptides and proteins enables their dynamic photocontrol in complex biological systems. Here, a perfluorinated azobenzene derivative triggered by amber light was site-specifically conjugated to cysteines in a helical peptide by perfluoroarylation chemistry. In response to the photoisomerization (trans→cis) of the conjugated azobenzene with amber light, the secondary structure of the peptide was modulated from a disorganized into an amphiphilic helical structure.}, language = {en} } @article{WeiserCuiDewhurstetal.2023, author = {Weiser, Jonas and Cui, Jingjing and Dewhurst, Rian D. and Braunschweig, Holger and Engels, Bernd and Fantuzzi, Felipe}, title = {Structure and bonding of proximity-enforced main-group dimers stabilized by a rigid naphthyridine diimine ligand}, series = {Journal of Computational Chemistry}, volume = {44}, journal = {Journal of Computational Chemistry}, number = {3}, doi = {10.1002/jcc.26994}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312586}, pages = {456 -- 467}, year = {2023}, abstract = {The development of ligands capable of effectively stabilizing highly reactive main-group species has led to the experimental realization of a variety of systems with fascinating properties. In this work, we computationally investigate the electronic, structural, energetic, and bonding features of proximity-enforced group 13-15 homodimers stabilized by a rigid expanded pincer ligand based on the 1,8-naphthyridine (napy) core. We show that the redox-active naphthyridine diimine (NDI) ligand enables a wide variety of structural motifs and element-element interaction modes, the latter ranging from isolated, element-centered lone pairs (e.g., E = Si, Ge) to cases where through-space π bonds (E = Pb), element-element multiple bonds (E = P, As) and biradical ground states (E = N) are observed. Our results hint at the feasibility of NDI-E2 species as viable synthetic targets, highlighting the versatility and potential applications of napy-based ligands in main-group chemistry.}, language = {en} } @article{LindlLamprechtArrowsmithetal.2023, author = {Lindl, Felix and Lamprecht, Anna and Arrowsmith, Merle and Khitro, Eugen and Rempel, Anna and Dietz, Maximilian and Wellnitz, Tim and B{\´e}langer-Chabot, Guillaume and Stoy, Andreas and Paprocki, Valerie and Prieschl, Dominik and Lenczyk, Carsten and Ramler, Jacqueline and Lichtenberg, Crispin and Braunschweig, Holger}, title = {Aromatic 1,2-Azaborinin-1-yls as Electron-Withdrawing Anionic Nitrogen Ligands for Main Group Elements}, series = {Chemistry - A European Journal}, volume = {29}, journal = {Chemistry - A European Journal}, number = {11}, doi = {10.1002/chem.202203345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312222}, year = {2023}, abstract = {The 2-aryl-3,4,5,6-tetraphenyl-1,2-azaborinines 1-EMe\(_{3}\) and 2-EMe\(_{3}\) (E=Si, Sn; aryl=Ph (1), Mes (=2,4,6-trimethylphenyl, 2)) were synthesized by ring-expansion of borole precursors with N\(_{3}\)EMe\(_{3}\)-derived nitrenes. Desilylative hydrolysis of 1- and 2-SiMe\(_{3}\) yielded the corresponding N-protonated azaborinines, which were deprotonated with nBuLi or MN(SiMe\(_{3}\))\(_{2}\) (M=Na, K) to the corresponding group 1 salts, 1-M and 2-M. While the lithium salts crystallized as monomeric Lewis base adducts, the potassium salts formed coordination polymers or oligomers via intramolecular K⋅⋅⋅aryl π interactions. The reaction of 1-M or 2-M with CO\(_{2}\) yielded N-carboxylate salts, which were derivatized by salt metathesis to methyl and silyl esters. Salt metathesis of 1-M or 2-M with methyl triflate, [Cp*BeCl] (Cp*=C\(_{5}\)Me\(_{5}\)), BBr\(_{2}\)Ar (Ar=Ph, Mes, 2-thienyl), ECl\(_{3}\) (E=B, Al, Ga) and PX\(_{3}\) (X=Cl, Br) afforded the respective group 2, 13 and 15 1,2-azaborinin-2-yl complexes. Salt metathesis of 1-K with BBr\(_{3}\) resulted not only in N-borylation but also Ph-Br exchange between the endocyclic and exocyclic boron atoms. Solution \(^{11}\)B NMR data suggest that the 1,2-azaborinin-2-yl ligand is similarly electron-withdrawing to a bromide. In the solid state the endocyclic bond length alternation and the twisting of the C\(_{4}\)BN ring increase with the sterics of the substituents at the boron and nitrogen atoms, respectively. Regression analyses revealed that the downfield shift of the endocyclic \(^{11}\)B NMR resonances is linearly correlated to both the degree of twisting of the C\(_{4}\)BN ring and the tilt angle of the N-substituent. Calculations indicate that the 1,2-azaborinin-1-yl ligand has no sizeable π-donor ability and that the aromaticity of the ring can be subtly tuned by the electronics of the N-substituent.}, language = {en} } @phdthesis{Ferger2023, author = {Ferger, Matthias}, title = {Development of New Methods for Triarylborane Synthesis and Investigation of Triarylborane Chromophores for DNA and RNA Sensing and Singlet Oxygen Sensitization}, doi = {10.25972/OPUS-23430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234307}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The 1st chapter provides a detailed review of the development of synthetic approaches to triarylboranes from their first report nearly 135 years ago to the present. In the 2nd chapter, a novel and convenient methodology is reported for the one-pot synthesis of sterically-congested triarylboranes, using bench-stable aryltrifluoroborates as the boron source. The new procedure gives access to symmetrically- and unsymmetrically-substituted triarylboranes. The borylated triarylboranes are suggested as building blocks for the design of functional materials. In the 3rd chapter, four luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nM range, are investigated. The molecular structures of two of the neutral precursors reveal some structural flexibility for these compounds in the solid state. The compounds were found to be highly emissive even in water and DNA and RNA binding affinities were found to be dependent on linker length and flexibility. Strong SERS responses for three of the four compounds demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. In chapter 4, the compound class of water-soluble tetracationic bis-triarylborane chromophores is extended by EDOT-linked compounds and those are compared to their thiophene-containing analogs. Absorption and emission are significantly red-shifted in these compounds, compared to their thiophene-containing analogs and, due to a large Stokes shift, one of the reported compounds exhibits the most bathochromically shifted emission, observable well into the near infrared region, of all tetracationic water-soluble bis-triarylborane chromophores reported to date. Long-lived excited states, completely quenched by oxygen, were observed for the water-stable compounds of this study via transient absorption spectroscopy and a quantum yield for singlet oxygen formation of 0.6 was determined for one of them.}, subject = {Triarylborane}, language = {en} } @article{WitteArrowsmithLamprechtetal.2023, author = {Witte, Robert and Arrowsmith, Merle and Lamprecht, Anna and Schorr, Fabian and Krummenacher, Ivo and Braunschweig, Holger}, title = {C-C and C-N Bond Activation, Lewis-Base Coordination and One- and Two-Electron Oxidation at a Linear Aminoborylene}, series = {Chemistry - A European Journal}, volume = {29}, journal = {Chemistry - A European Journal}, number = {16}, doi = {10.1002/chem.202203663}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312491}, year = {2023}, abstract = {A cyclic alkyl(amino)carbene (CAAC)-stabilized dicoordinate aminoborylene is synthesized by the twofold reduction of a [(CAAC)BCl\(_{2}\)(TMP)] (TMP=2,6-tetramethylpiperidyl) precursor. NMR-spectroscopic, X-ray crystallographic and computational analyses confirm the cumulenic nature of the central C=B=N moiety. Irradiation of [(CAAC)B(TMP)] (2) resulted in an intramolecular C-C bond activation, leading to a doubly-fused C\(_{10}\)BN heterocycle, while the reaction with acetonitrile resulted in an aryl migration from the CAAC to the acetonitrile nitrogen atom, concomitant with tautomerization of the latter to a boron-bound allylamino ligand. One-electron oxidation of 2 with CuX (X=Cl, Br) afforded the corresponding amino(halo)boryl radicals, which were characterized by EPR spectroscopy and DFT calculations. Placing 2 under an atmosphere of CO afforded the tricoordinate (CAAC,CO)-stabilized aminoborylene. Finally, the twofold oxidation of 2 with chalcogens led, in the case of N\(_{2}\)O and sulfur, to the splitting of the B-C\(_{CAAC}\) bond and formation of the 2,4-diamino-1,3,2,4-dichalcogenadiboretanes and CAAC-chalcogen adducts, whereas with selenium a monomeric boraselenone was isolated, which showed some degree of B-Se multiple bonding.}, language = {en} } @article{BruecknerRitschelJimenez‐Hallaetal.2023, author = {Br{\"u}ckner, Tobias and Ritschel, Benedikt and Jim{\´e}nez-Halla, J. Oscar C. and Fantuzzi, Felipe and Duwe, Dario and Markl, Christian and Dewhurst, Rian D. and Dietz, Maximilian and Braunschweig, Holger}, title = {Metal-Free Intermolecular C-H Borylation of N-Heterocycles at B-B Multiple Bonds}, series = {Angewandte Chemie International Edition}, volume = {62}, journal = {Angewandte Chemie International Edition}, number = {5}, doi = {10.1002/anie.202213284}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312385}, year = {2023}, abstract = {Carbene-stabilized diborynes of the form LBBL (L=N-heterocyclic carbene (NHC) or cyclic alkyl(amino)carbene (CAAC)) induce rapid, high yielding, intermolecular ortho-C-H borylation at N-heterocycles at room temperature. A simple pyridyldiborene is formed when an NHC-stabilized diboryne is combined with pyridine, while a CAAC-stabilized diboryne leads to activation of two pyridine molecules to give a tricyclic alkylideneborane, which can be forced to undergo a further H-shift resulting in a zwitterionic, doubly benzo-fused 1,3,2,5-diazadiborinine by heating. Use of the extended N-heteroaromatic quinoline leads to a borylmethyleneborane under mild conditions via an unprecedented boron-carbon exchange process.}, language = {en} } @article{WeiWangYangetal.2023, author = {Wei, Yuxiang and Wang, Junyi and Yang, Weiguang and Lin, Zhenyang and Ye, Qing}, title = {Boosting Ring Strain and Lewis Acidity of Borirane: Synthesis, Reactivity and Density Functional Theory Studies of an Uncoordinated Arylborirane Fused to o-Carborane}, series = {Chemistry - A European Journal}, volume = {29}, journal = {Chemistry - A European Journal}, number = {5}, doi = {10.1002/chem.202203265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312089}, year = {2023}, abstract = {Among the parent borirane, benzoborirene and ortho-dicarbadodecaborane-fused borirane, the latter possesses the highest ring strain and the highest Lewis acidity according to our density functional theory (DFT) studies. The synthesis of this class of compounds is thus considerably challenging. The existing examples require either a strong π-donating group or an extra ligand for B-coordination, which nevertheless suppresses or completely turns off the Lewis acidity. The title compound, which possesses both features, not only allows the 1,2-insertion of P=O, C=O or C≡N to proceed under milder conditions, but also enables the heretofore unknown dearomative 1,4-insertion of Ar-(C=O)- into a B-C bond. The fusion of strained molecular systems to an o-carborane cage shows great promise for boosting both the ring strain and acidity.}, language = {en} }