@phdthesis{Rumpel2024, author = {Rumpel, Matthias}, title = {Development of Components for Solid-State Batteries and their Characterization}, doi = {10.25972/OPUS-34715}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347154}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {This Ph.D. thesis has addressed several main issues in current ASSB research within four studies. Ceramic ASSBs are meant to enable the implementation of Li-metal anodes and high voltage cathode materials, which would increase energy density, power density, life time as well as safety aspects in comparison with commercially available liquid electrolyte LiBs. In this thesis, several scientific questions arising on the cathode side of ASSBs have been focused on. With respect to the target system of a ternary composite bulk cathode consisting of ceramic active material, ceramic SSE and an electrically conductive component, studies about the thermal stabilities of these components and their impact on the electrochemical performance have been conducted. Particulate bulk cathode composites have to fulfil electrochemical, chemical, mechanical and structural requirements in order to compete with commercial LiBs. Particularly, the production process requires high-temperature sintering to obtain firmly bonded contacts in order to maximize the electrochemically active area, charge transfer and ionic conduction. However, interdiffusion, intermixing and decomposition of the initial components during sintering result in low-performing ASSBs so far. These side reactions during high-temperature treatment have been investigated in order to gain a better understanding of these mechanisms and to enable a better controlling of the manufacturing process as well as to simplify the choice of material combinations. The first two parts of this thesis deal with the thermal stability of the ceramic SSE LATP in combination with various active materials and with the validation of a probable improvement of the sintering process due to liquid phase sintering of LATP by adding Li3PO4. In the third and fourth parts, the impact of interdiffusion, intermixing and decomposition on the electrochemical performance of TF-SSBs based on the active material LMO and the ceramic SSE Ga-LLZO has been investigated.}, subject = {Elektrochemie}, language = {en} } @phdthesis{Maier2024, author = {Maier, Matthias}, title = {Inorganic and Inorganic-Organic Hybrid Polymers Containing BN Units in the Main Chain}, doi = {10.25972/OPUS-35153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {π-Conjugated organic polymers have attracted tremendous attention in the last decades, and the interest in these materials is mainly driven by their applicability in next-generation electronic and optoelectronic devices (OLEDs, OFETs, photovoltaics). The partial or complete replacement of carbon atoms by main group elements in conjugated polymers can significantly change the characteristics and applications of these macromolecules. In this work, a class of inorganic polymers comprising a backbone of exclusively boron and nitrogen atoms (poly(iminoborane)s, PIBs) and their monodisperse oligomers is described. In addition, novel inorganic-organic hybrid polymers containing BN units in their polymer backbone were synthesized and characterized. In chapter 2.1, the development of catalytic B-N coupling routes for the controlled synthesis of macromolecular materials is described. While the reaction of an N-silyl-B-chloro-aminoborane with the electrophilic reagent trimethylsilyl triflate led to effective B-N coupling, the reaction with a silver(I) salt resulted in an intramolecular Cl/Me exchange between the boron and silicon centers. In chapter 2.2-2.4, the study of oligo- and poly(iminoborane)s is discussed. Monodisperse and cyclolinear oligo(iminoborane)s based on diazaborolidines with up to 7 boron and 8 nitrogen atoms were synthesized by successively extending the B-N main chain. However, the use of benzodiazaborolines only led to limited BN catenation. Furthermore, the redistribution processes resulting from the reaction of longer oligomers with non-stoichiometric amounts of (di)halogenated boranes is reported. In chapter 2.5-2.6, the synthesis of 1,2,5-azadiborolanes as building blocks for the synthesis of poly(iminoborane)s and inorganic-organic hybrid polymers is described. While the attempt to apply an azadiborolane with sterically demanding groups on the boron-bridging ethylene unit for the construction of PIB was unfeasible, it was successfully incorporated in inorganic-organic hybrid polymers. Photophysical studies indicated π-conjugation along the polymer chain. A first attempt to synthesize PIBs based on azadiborolanes with unsubstituted ethylene units showed promising results. In chapter 2.7-2.8, a comprehensive study of poly(arylene iminoborane)s, which are BN analogs of poly(arylene vinylene)s is described, and the properties of four polymers as well as twelve monodisperse oligomers were investigated. Photophysical investigations of the monomers, dimers and polymers showed a systematic bathochromic shift of the absorption maximum with increasing chain length and thiophene content. Based on TD-DFT calculations of the model oligomers, the lowest-energy absorption band could be assigned to HOMO to LUMO transitions with π-π* character. The oligo- and poly(arylene iminoborane)s showed only very weak to no emission in solution but they were emissive in the solid state. For four oligomers the aggregation induced emission (AIE) in a THF/water mixture was investigated and DLS studies confirmed the formation of nanoaggregates. In chapter 2.9, oligo- and polymerizations of sulfur-containing building blocks and subsequent pH-triggered degradation of the products is described. While a sulfilimine-containing oligomer could not be isolated, the sulfone-, sulfoximine-, and sulfoxide-containing molecular oligomers and polymers could be successfully synthesized by B=N or B-O bond formation reactions. The sulfur-containing building blocks were successfully released under acidic or basic conditions, which was confirmed by NMR spectroscopy and mass spectrometry.}, subject = {Anorganische Polymere}, language = {en} }