@phdthesis{Bangert2019, author = {Bangert, Philip}, title = {Magnetic Attitude Control of Miniature Satellites and its Extension towards Orbit Control using an Electric Propulsion System}, isbn = {978-3-945459-28-7 (online)}, issn = {1868-7474}, doi = {10.25972/OPUS-17702}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177020}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The attitude and orbit control system of pico- and nano-satellites to date is one of the bottle necks for future scientific and commercial applications. A performance increase while keeping with the satellites' restrictions will enable new space missions especially for the smallest of the CubeSat classes. This work addresses methods to measure and improve the satellite's attitude pointing and orbit control performance based on advanced sensor data analysis and optimized on-board software concepts. These methods are applied to spaceborne satellites and future CubeSat missions to demonstrate their validity. An in-orbit calibration procedure for a typical CubeSat attitude sensor suite is developed and applied to the UWE-3 satellite in space. Subsequently, a method to estimate the attitude determination accuracy without the help of an external reference sensor is developed. Using this method, it is shown that the UWE-3 satellite achieves an in-orbit attitude determination accuracy of about 2°. An advanced data analysis of the attitude motion of a miniature satellite is used in order to estimate the main attitude disturbance torque in orbit. It is shown, that the magnetic disturbance is by far the most significant contribution for miniature satellites and a method to estimate the residual magnetic dipole moment of a satellite is developed. Its application to three CubeSats currently in orbit reveals that magnetic disturbances are a common issue for this class of satellites. The dipole moments measured are between 23.1mAm² and 137.2mAm². In order to autonomously estimate and counteract this disturbance in future missions an on-board magnetic dipole estimation algorithm is developed. The autonomous neutralization of such disturbance torques together with the simplification of attitude control for the satellite operator is the focus of a novel on-board attitude control software architecture. It incorporates disturbance torques acting on the satellite and automatically optimizes the control output. Its application is demonstrated in space on board of the UWE-3 satellite through various attitude control experiments of which the results are presented here. The integration of a miniaturized electric propulsion system will enable CubeSats to perform orbit control and, thus, open up new application scenarios. The in-orbit characterization, however, poses the problem of precisely measuring very low thrust levels in the order of µN. A method to measure this thrust based on the attitude dynamics of the satellite is developed and evaluated in simulation. It is shown, that the demonstrator mission UWE-4 will be able to measure these thrust levels with a high accuracy of 1\% for thrust levels higher than 1µN. The orbit control capabilities of UWE-4 using its electric propulsion system are evaluated and a hybrid attitude control system making use of the satellite's magnetorquers and the electric propulsion system is developed. It is based on the flexible attitude control architecture mentioned before and thrust vector pointing accuracies of better than 2° can be achieved. This results in a thrust delivery of more than 99\% of the desired acceleration in the target direction.}, subject = {Satellit}, language = {en} }