@article{StolpmannBrinkmannSalzmannetal.2012, author = {Stolpmann, K. and Brinkmann, J. and Salzmann, S. and Genkinger, D. and Fritsche, E. and Hutzler, C. and Wajant, H. and Luch, A. and Henkler, F.}, title = {Activation of the aryl hydrocarbon receptor sensitises human keratinocytes for CD95L-and TRAIL-induced apoptosis}, series = {Cell Death \& Disease}, volume = {3}, journal = {Cell Death \& Disease}, number = {e388}, doi = {10.1038/cddis.2012.127}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133501}, year = {2012}, abstract = {In this study, we have analysed the apoptotic effects of the ubiquitous environmental toxin benzo[ a] pyrene (BP) in HaCaT cells and human keratinocytes. Although prolonged exposure to BP was not cytotoxic on its own, a strong enhancement of CD95 (Fas)-mediated apoptosis was observed with BP at concentrations activating the aryl hydrocarbon receptor (AhR). Importantly, the ultimately mutagenic BP-metabolite, that is, (+)-anti-BP-7,8-diol-9,10-epoxide (BPDE), failed to enhance CD95-mediated cell death, suggesting that the observed pro-apoptotic effect of BP is neither associated with DNA adducts nor DNA-damage related signalling. CD95-induced apoptosis was also enhanced by beta-naphtoflavone, a well-known agonist of the AhR that does not induce DNA damage, thus suggesting a crucial role for AhR activation. Consistently, BP failed to sensitise for CD95L-induced apoptosis in AhR knockdown HaCaT cells. Furthermore, inhibition of CYP1A1 and/or 1B1 expression did not affect the pro-apoptotic crosstalk. Exposure to BP did not increase expression of CD95, but led to augmented activation of caspase-8. Enhancement of apoptosis was also observed with the TRAIL death receptors that activate caspase-8 and apoptosis by similar mechanisms as CD95. Together, these observations indicate an interference of AhR signalling with the activity of receptor-associated signalling intermediates that are shared by CD95 and TRAIL receptors. Our data thus suggest that AhR agonists can enhance cytokine-mediated adversity upon dermal exposure.}, language = {en} } @article{RauertStuehmerBargouetal.2011, author = {Rauert, H. and St{\"u}hmer, T. and Bargou, R. and Wajant, H. and Siegmund, D.}, title = {TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76092}, year = {2011}, abstract = {The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFjBmediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFjB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival.}, subject = {Medizin}, language = {en} } @article{RauertStuehmerBargouetal.2011, author = {Rauert, H. and St{\"u}hmer, T. and Bargou, R. and Wajant, H. and Siegmund, D.}, title = {TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms}, series = {Cell Death and Disease}, volume = {2}, journal = {Cell Death and Disease}, doi = {10.1038/cddis.2011.78}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133486}, pages = {e194}, year = {2011}, abstract = {The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFjBmediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFjB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival}, language = {en} }