@phdthesis{Lu2020, author = {Lu, Yunzhi}, title = {Kinetics of mouse and human muscle type nicotinic receptor channels}, doi = {10.25972/OPUS-19268}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192688}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Acetylcholine (ACh) mediates transmission at vertebrate neuromuscular junctions and many other synapses. The postsynaptic ACh receptors at neuromuscular junctions are of the nicotinic subtype (nAChRs). They are among the best studied receptor channels and often serve as models or receptor prototypes. Despite a wealth of information on muscle type nAChRs so far little is known about species specific functional differences. In this work, mouse and human adult muscle type nAChRs are investigated. Cell attached recordings in the HEK293T heterologous expression system provided evidence that the ACh affinity of recombinant mouse and human adult muscle type nAChRs are different. To clarify this, I compared these receptors in outside-out patches employing a system for fast agonist application. Thus, the individual membrane patches with receptors can be exposed to various ligand concentrations. In response to 10 and 30 µM ACh normalized peak currents ({\^i}) were significantly larger and current rise-time (tr) shorter in human than in mouse receptors. Analyzing dose-response curves of {\^i} and tr and fitting them with a two-step equivalent binding-site kinetic mechanism revealed a two-fold higher ACh association rate constant in human compared to mouse receptors. Furthermore, human nAChRs were blocked faster in outside-out patches by superfusion of 300 nM α-Bungarotoxin (α-Bgtx) than mouse nAChRs. Finally, human nAChRs in outside-out patches showed higher affinity at 3 µM ACh than chimeric receptors consisting of mouse α- and human β-, γ- and ε-subunits. The higher affinity of human than mouse receptors for ACh and α-Bgtx is thus at least in part due to sequence difference in their α-subunits.}, subject = {Nicotinischer Acetylcholinrezeptor}, language = {en} } @phdthesis{Becker2018, author = {Becker, Martin}, title = {Understanding Human Navigation using Bayesian Hypothesis Comparison}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163522}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Understanding human navigation behavior has implications for a wide range of application scenarios. For example, insights into geo-spatial navigation in urban areas can impact city planning or public transport. Similarly, knowledge about navigation on the web can help to improve web site structures or service experience. In this work, we focus on a hypothesis-driven approach to address the task of understanding human navigation: We aim to formulate and compare ideas — for example stemming from existing theory, literature, intuition, or previous experiments — based on a given set of navigational observations. For example, we may compare whether tourists exploring a city walk "short distances" before taking their next photo vs. they tend to "travel long distances between points of interest", or whether users browsing Wikipedia "navigate semantically" vs. "click randomly". For this, the Bayesian method HypTrails has recently been proposed. However, while HypTrails is a straightforward and flexible approach, several major challenges remain: i) HypTrails does not account for heterogeneity (e.g., incorporating differently behaving user groups such as tourists and locals is not possible), ii) HypTrails does not support the user in conceiving novel hypotheses when confronted with a large set of possibly relevant background information or influence factors, e.g., points of interest, popularity of locations, time of the day, or user properties, and finally iii) formulating hypotheses can be technically challenging depending on the application scenario (e.g., due to continuous observations or temporal constraints). In this thesis, we address these limitations by introducing various novel methods and tools and explore a wide range of case studies. In particular, our main contributions are the methods MixedTrails and SubTrails which specifically address the first two limitations: MixedTrails is an approach for hypothesis comparison that extends the previously proposed HypTrails method to allow formulating and comparing heterogeneous hypotheses (e.g., incorporating differently behaving user groups). SubTrails is a method that supports hypothesis conception by automatically discovering interpretable subgroups with exceptional navigation behavior. In addition, our methodological contributions also include several tools consisting of a distributed implementation of HypTrails, a web application for visualizing geo-spatial human navigation in the context of background information, as well as a system for collecting, analyzing, and visualizing mobile participatory sensing data. Furthermore, we conduct case studies in many application domains, which encompass — among others — geo-spatial navigation based on photos from the photo-sharing platform Flickr, browsing behavior on the social tagging system BibSonomy, and task choosing behavior on a commercial crowdsourcing platform. In the process, we develop approaches to cope with application specific subtleties (like continuous observations and temporal constraints). The corresponding studies illustrate the variety of domains and facets in which navigation behavior can be studied and, thus, showcase the expressiveness, applicability, and flexibility of our methods. Using these methods, we present new aspects of navigational phenomena which ultimately help to better understand the multi-faceted characteristics of human navigation behavior.}, subject = {Bayes-Verfahren}, language = {en} } @phdthesis{Costea2016, author = {Costea, Paul Igor}, title = {Stratification and variation of the human gut microbiota}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139649}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The microbial communities that live inside the human gastrointestinal tract -the human gut microbiome- are important for host health and wellbeing. Characterizing this new "organ", made up of as many cells as the human body itself, has recently become possible through technological advances. Metagenomics, the high-throughput sequencing of DNA directly from microbial communities, enables us to take genomic snapshots of thousands of microbes living together in this complex ecosystem, without the need for isolating and growing them. Quantifying the composition of the human gut microbiome allows us to investigate its properties and connect it to host physiology and disease. The wealth of such connections was unexpected and is probably still underestimated. Due to the fact that most of our dietary as well as medicinal intake affects the microbiome and that the microbiome itself interacts with our immune system through a multitude of pathways, many mechanisms have been proposed to explain the observed correlations, though most have yet to be understood in depth. An obvious prerequisite to characterizing the microbiome and its interactions with the host is the accurate quantification of its composition, i.e. determining which microbes are present and in what numbers they occur. Historically, standard practices have existed for sample handling, DNA extraction and data analysis for many years. However, these were generally developed for single microbe cultures and it is not always feasible to implement them in large scale metagenomic studies. Partly because of this and partly because of the excitement that new technology brings about, the first metagenomic studies each took the liberty to define their own approach and protocols. From early meta-analysis of these studies it became clear that the differences in sample handling, as well as differences in computational approaches, made comparisons across studies very difficult. This restricts our ability to cross-validate findings of individual studies and to pool samples from larger cohorts. To address the pressing need for standardization, we undertook an extensive comparison of 21 different DNA extraction methods as well as a series of other sample manipulations that affect quantification. We developed a number of criteria for determining the measurement quality in the absence of a mock community and used these to propose best practices for sampling, DNA extraction and library preparation. If these were to be accepted as standards in the field, it would greatly improve comparability across studies, which would dramatically increase the power of our inferences and our ability to draw general conclusions about the microbiome. Most metagenomics studies involve comparisons between microbial communities, for example between fecal samples from cases and controls. A multitude of approaches have been proposed to calculate community dissimilarities (beta diversity) and they are often combined with various preprocessing techniques. Direct metagenomics quantification usually counts sequencing reads mapped to specific taxonomic units, which can be species, genera, etc. Due to technology-inherent differences in sampling depth, normalizing counts is necessary, for instance by dividing each count by the sum of all counts in a sample (i.e. total sum scaling), or by subsampling. To derive a single value for community (dis-)similarity, multiple distance measures have been proposed. Although it is theoretically difficult to benchmark these approaches, we developed a biologically motivated framework in which distance measures can be evaluated. This highlights the importance of data transformations and their impact on the measured distances. Building on our experience with accurate abundance estimation and data preprocessing techniques, we can now try and understand some of the basic properties of microbial communities. In 2011, it was proposed that the space of genus level variation of the human gut microbial community is structured into three basic types, termed enterotypes. These were described in a multi-country cohort, so as to be independent of geography, age and other host properties. Operationally defined through a clustering approach, they are "densely populated areas in a multidimensional space of community composition"(source) and were proposed as a general stratifier for the human population. Later studies that applied this concept to other datasets raised concerns about the optimum number of clusters and robustness of the clustering approach. This heralded a long standing debate about the existence of structure and the best ways to determine and capture it. Here, we reconsider the concept of enterotypes, in the context of the vastly increased amounts of available data. We propose a refined framework in which the different types should be thought of as weak attractors in compositional space and we try to implement an approach to determining which attractor a sample is closest to. To this end, we train a classifier on a reference dataset to assign membership to new samples. This way, enterotypes assignment is no longer dataset dependent and effects due to biased sampling are minimized. Using a model in which we assume the existence of three enterotypes characterized by the same driver genera, as originally postulated, we show the relevance of this stratification and propose it to be used in a clinical setting as a potential marker for disease development. Moreover, we believe that these attractors underline different rules of community assembly and we recommend they be accounted for when analyzing gut microbiome samples. While enterotypes describe structure in the community at genus level, metagenomic sequencing can in principle achieve single-nucleotide resolution, allowing us to identify single nucleotide polymorphisms (SNPs) and other genomic variants in the gut microbiome. Analysis methodology for this level of resolution has only recently been developed and little exploration has been done to date. Assessing SNPs in a large, multinational cohort, we discovered that the landscape of genomic variation seems highly structured even beyond species resolution, indicating that clearly distinguishable subspecies are prevalent among gut microbes. In several cases, these subspecies exhibit geo-stratification, with some subspecies only found in the Chinese population. Generally however, they present only minor dispersion limitations and are seen across most of our study populations. Within one individual, one subspecies is commonly found to dominate and only rarely are several subspecies observed to co-occur in the same ecosystem. Analysis of longitudinal data indicates that the dominant subspecies remains stable over periods of more than three years. When interrogating their functional properties we find many differences, with specific ones appearing relevant to the host. For example, we identify a subspecies of E. rectale that is lacking the flagellum operon and find its presence to be significantly associated with lower body mass index and lower insulin resistance of their hosts; it also correlates with higher microbial community diversity. These associations could not be seen at the species level (where multiple subspecies are convoluted), which illustrates the importance of this increased resolution for a more comprehensive understanding of microbial interactions within the microbiome and with the host. Taken together, our results provide a rigorous basis for performing comparative metagenomics of the human gut, encompassing recommendations for both experimental sample processing and computational analysis. We furthermore refine the concept of community stratification into enterotypes, develop a reference-based approach for enterotype assignment and provide compelling evidence for their relevance. Lastly, by harnessing the full resolution of metagenomics, we discover a highly structured genomic variation landscape below the microbial species level and identify common subspecies of the human gut microbiome. By developing these high-precision metagenomics analysis tools, we thus hope to contribute to a greatly improved understanding of the properties and dynamics of the human gut microbiome.}, subject = {Mensch}, language = {en} } @phdthesis{Ott2013, author = {Ott, Christine Kornelia}, title = {Diverse Aspects of the Sorting and Assembly Machinery in Human Mitochondria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Mitochondria are organelles of endosymbiotic origin, which play many important roles in eukaryotic cells. Mitochondria are surrounded by two membranes and, considering that most of the mitochondrial proteins are produced in the cytosol, possess import machineries, which transport mitochondria-targeted proteins to their designated location. A special class of outer mitochondrial membrane (OMM) proteins, the β-barrel proteins, require the sorting and assembly machinery (SAM) for their OMM integration. Both mitochondrial β-barrel proteins and the central component of the SAM complex, Sam50, have homologs in gram-negative bacteria. In yeast mitochondria, bacterial β-barrel proteins can be imported and assembled into the OMM. Our group demonstrated that this, however, is not the case for human mitochondria, which import only neisserial β barrel proteins, but not those of Escherichia coli and Salmonella enterica. As a part of this study, I could demonstrate that β-barrel proteins such as Omp85 and PorB of different Neisseria species are targeted to human mitochondria. Interestingly, only proteins belonging to the neisserial Omp85 family were integrated into the OMM, whereas PorB was imported into mitochondria but not assembled. By exchanging parts of homologous neisserial Omp85 and E. coli BamA and, similarly, of neisserial PorB and E. coli OmpC, it could be demonstrated in this work that the mitochondrial import signal of bacterial β barrel proteins cannot be limited to one short linear sequence, but rather secondary structure and protein charge seem to play an important role, as well as specific residues in the last β-strand of Omp85. Omp85 possesses five conserved POTRA domains in its amino-terminal part. This work additionally demonstrated that in human mitochondria, at least two POTRA domains of Omp85 are necessary for membrane integration and functionality of Omp85. In the second part of this work, the influence of Sam50 on the mitochondrial cristae structure was investigated. This work contributed to a study performed by our group in which it was confirmed that Sam50 is present in a high molecular weight complex together with mitofilin, CHCHD3, CHCHD6, DnaJC11, metaxin 1 and metaxin 2. This connection between the inner and outer mitochondrial membrane was shown to be crucial for the maintenance of the mitochondrial cristae structure. In addition, a role of Sam50 in respiratory complex assembly, suggested by a SILAC experiment conducted in our group, could be confirmed by in vitro import studies. An influence of Sam50 not only on respiratory complexes but also on the recently described respiratory complex assembly factor TTC19 was demonstrated. It was shown that TTC19 not only plays a role in complex III assembly as published, but also influences the assembly of respiratory complex IV. Thus, in this part of the work a connection between the OMM protein Sam50 and maintenance of cristae structure, respiratory complex assembly and an assembly factor could be established.}, subject = {Mitochondrien}, language = {en} } @phdthesis{Frey2011, author = {Frey, Monika}, title = {Effects and mechanisms of a putative human pheromone}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72292}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {There is evidence that pheromones are communicative signals in animals. However, the existence and function of human pheromones are still under discussion. During the last years several substances have been labeled as putative human pheromones and especially 4,16-androstadien-3-one (androstadienone), found in male and female sweat, became subject of intense investigation. In contrast to common odors androstadienone presumably modulates human physiological and psychological reactions. Data suggest that androstadienone might influence the processing of visual cues, specifically faces or affective stimuli, via projections from the fusiform gyrus and the amygdala. Moreover, attentional processes may be modulated, which is supported by explicit and implicit behavioral data. This thesis includes three experimental studies examining effects of androstadienone exposure on behavioral and cortical reactions to visual and emotional stimuli. The main hypotheses were that androstadienone might influence human behavior to and perception of visual cues. The first study sought to clarify androstadienone effects on attention-related reactions as well as on behavioral tendencies. Motoric approach-avoidance reactions in response to happy and angry facial expressions were investigated in 30 women and 32 men. Participants either inhaled androstadienone or a control solution, without knowing the real content, while performing the following task: they had to push away or to pull towards them a joystick as fast as possible in reaction to either an angry or a happy cartoon face, which was presented on a computer screen. Results showed that androstadienone modulated the participant´s task performance by accelerating the reaction speed compared to the control compound. Faster reactions were observed particularly when reacting to angry faces but not when reacting to happy faces. This might be explained by the finding that human body odors, the source of androstadienone, were found to activate the human fear system, i.e. modulating fear-related attentional processes. Therefore, the quicker reaction towards angry faces with exposure to androstadienone could be due to an enhanced allocation of attentional resources towards fear-related cues like angry faces. Results also showed that androstadienone enhanced men´s approach tendency towards faces independent of emotional expressions. This observation might be explained by androstadienone´s former shown ability to improve attractiveness ratings of other persons. In this regard, the endogenous odor might enhance evaluations of faces in men and, thus, might improve their willingness to approach social stimuli. In contrast to men, women already showed in the control condition higher approach tendency towards faces. Therefore, androstadienone might rather maintain than enhance the approach score in women. In the second study event-related brain potentials (ERPs) triggered by social and non-social visual stimuli were investigated by means of electroencephalography. In a double-blind between-subjects design 51 women participated. Twenty-eight women inhaled androstadienone, whereas 23 women inhaled a control solution. Four different picture categories, i.e. real faces, pictures with couples, pictures with social and non-social scenes, each including three different valence categories, i.e. positive, negative and neutral, should clarify the stimulus type or context androstadienone is acting on. The androstadienone compared to the control odor did not influence brain responses significantly. Explorative analyses, however, suggested that androstadienone influences the processing of faces. While in the control group angry faces elicited larger P300 amplitudes than happy faces, the androstadienone group showed similar P300 amplitudes concerning all emotional expressions. This observation tentatively indicates that the endogenous odor might indeed affect the neuronal responses to emotional facial stimuli, especially late components reflecting evaluative processes. However, this observation has to be verified and further investigated, in particular whether androstadienone caused reduced responses to angry faces or enhanced responses to happy faces. The third study investigated androstadienone effects on face processing especially in men. ERPs elicited by happy, angry and neutral cartoon faces, which were presented on a computer screen, were measured while 16 men, not knowing the applicated odor, inhaled either androstadienone or a control solution. Exposure to androstadienone significantly increased later neuronal responses, the P300 amplitude. This belated component of the ERP reflects attention allocation and evaluative processes towards important stimuli. Therefore, androstadienone might facilitate central nervous face processing by enhancing attention towards these stimuli. In sum, the current results corroborate the notion of androstadienone as an active social chemosignal. In minute amounts and not detectable as an odor it influenced cortical and motoric reactions. Therefore, it might be concluded that androstadienone indeed affects cognitive functions like attentional processes and in turn affects our behavior. The current results further support the notion that androstadienone acts like a human modulator pheromone, namely modulating ongoing behavior or a psychological reaction to a particular context, changing stimulus sensitivity, salience and sensory-motor integration. However, these conclusions remain tentative until further replication takes place, best in ecologically valid environments. Furthermore, one has to keep in mind that the current studies could not replicate several previous findings and could not verify some hypotheses assuming communicative effects of androstadienone. Thus, the main assumption of this thesis that androstadienone is an active chemosignal is still challenged. Also, whether the term "pheromone" is indeed suitable to label androstadienone remains open.}, subject = {Pheromon}, language = {en} } @phdthesis{Schmitt2010, author = {Schmitt, Kathrin}, title = {Identification and Characterization of GAS2L3 as a Novel Mitotic Regulator in Human Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52704}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Precise control of mitotic progression is vital for the maintenance of genomic integrity. Since the loss of genomic integrity is known to promote tumorigenesis, the identification of knew G2/M regulatory genes attracts great attention. LINC, a human multiprotein complex, is a transcriptional activator of a set of G2/M specific genes. By depleting LIN9 in MEFs, a core subunit of LINC, Gas2l3 was identified as a novel LINC target gene. The so far uncharacterized Gas2l3 gene encodes for a member of the family of growth arrest specific 2 (GAS2) proteins, which share a highly conserved putative actin binding CH and a putative microtubule binding GAS2 domain. In the present study GAS2L3 was identified as a LINC target gene also in human cells. Gene expression analysis revealed that GAS2L3 transcription, in contrast to all other GAS2 family members, is highly regulated during the cell cycle with highest expression in G2/M. The GAS2L3 protein showed a specific localization pattern during the M phase: In metaphase, GAS2L3 localized to the mitotic spindle, relocated to the spindle midzone microtubules in late anaphase and concentrated at the midbody in telophase where it persisted until the end of cytokinesis. Overexpression of a set of different GAS2L3 deletion mutants demonstrated that the localization to the mitotic microtubule network is dependent on the C-terminus, whereas the midbody localization is dependent on full length GAS2L3 protein. Additionally, exclusive overexpression of the CH domain induced the formation of actin stress fibers, suggesting that the CH domain is an actin binding domain. In contrast, the GAS2 domain was neither needed nor sufficient for microtubule binding, indicating that there must be an additional so far unknown microtubule binding domain in the C-terminus. Interestingly, immunoblot analysis also identified the C-terminus as the domain responsible for GAS2L3 protein instability, partially dependent on proteasomal degradation. Consistent with its specific localization pattern, GAS2L3 depletion by RNAi demonstrated its responsibility for proper mitosis and cytokinesis. GAS2L3 depletion in HeLa cells resulted in the accumulation of multinucleated cells, an indicator for chromosome mis-segregation during mitosis. Also the amount of cells in cytokinesis was enriched, indicating failures in completing the last step of cytokinesis, the abscission. Strikingly, treatment with microtubule poisons that lead to the activation of the spindle assembly checkpoint (SAC) indicated that the SAC was weakened in GAS2L3 depleted cells. Although the exact molecular mechanism is still unknown, fist experiments support the hypothesis that GAS2L3 might be a regulator of the SAC master kinase BUBR1. In conclusion, this study provides first evidence for GAS2L3 as a novel regulator of mitosis and cytokinesis and it might therefore be an important guardian against tumorigenesis.}, subject = {Mensch}, language = {en} } @phdthesis{Christensen2003, author = {Christensen, Morten Overby}, title = {Dynamics of human DNA Topoisomerases I and II}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-4927}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {The first goal of this study was to develop cell lines with a stable expression of bio-fluorescent topo II and topo I. This was successfully achieved using a bicistronic vector system. Control experiments showed that proteins of expected size were expressed, and that GFP-tagged topos I, IIa, and IIb were active in the cells and fully integrated in the endogenous pools of the enzymes. These cell-lines provided a novel tool for investigating the cell biology of human DNA topoisomerases. Our most important finding was, that both types of mammalian topoisomerases are entirely mobile proteins that are in continuous and rapid flux between all compartments of the nucleus and between the cytososl and the chromosomes of mitotic cells. This was particularly surprising with regard to topo II, which is considered to be a structural component of the nuclear matrix and the chromosome scaffold. We must conclude that if this was the case, then these architectural structures appear to be much more dynamic than believed until now. In this context it should also be mentioned, that the alignment of topo II with the central axes of the chromosome arms, which has until now been considered a hall-mark of the enzyme's association with the chromosomal scaffold, is not seen in vivo and can be demonstrated to be to some extent an artefact of immunohistochemistry. Furthermore, we show that the two isoforms of topo II (a and b) have a different localisation during mitotic cell division, supporting the general concept that topo II functions at mitosis are exclusively assigned to the a-form, whereas at interphase the two isoenzymes work in concert. Despite unrestricted mobility within the entire nuclear space, topoisomerases I and II impose as mostly nucleolar proteins. We show that this is due to the fact that in the nucleoli they are moving slower than in the nucleoplasm. The decreased nucleolar mobility cannot be due to DNA-interactions, because compounds that fix topoisomerases to the DNA deplete them from the nucleoli. Interestingly, the subnucleolar distribution of topoisomerases I and II was complementary. The type II enzyme filled the entire nucleolar space, but excluded the fibrial centers, whereas topo I accumulated at the fibrial centers, an allocation directed by the enzyme's N-terminus. During mitosis, it also mediates association with the nucleolar organising regions of the acrocentric chromosomes. Thus, topo I stays associated with the rDNA during the entire cell-cycle and consistently colocalizes there with RNA-polymerase I. Finally, we show that certain cancer drugs believed to act by stabilising covalent catalytic DNA-intermediates of topoisomerases, do indeed immobilize the enzymes in living cells. Interestingly, these drugs do not target topoisomerases in the nucleoli but only in the nucleoplasm.}, subject = {Mensch}, language = {en} } @phdthesis{Wietek2001, author = {Wietek, Irina}, title = {Human Interleukin-4 binding protein epitope involved in high-affinity binding of interleukin-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3190}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {No abstract available}, subject = {Mensch}, language = {en} }