@article{PlauthGeikowskiCichonetal.2016, author = {Plauth, Annabell and Geikowski, Anne and Cichon, Susanne and Wowro, Sylvia J. and Liedgens, Linda and Rousseau, Morten and Weidner, Christopher and Fuhr, Luise and Kliem, Magdalena and Jenkins, Gail and Lotito, Silvina and Wainwright, Linda J. and Sauer, Sascha}, title = {Hormetic shifting of redox environment by pro-oxidative resveratrol protects cells against stress}, series = {Free Radical Biology and Medicine}, volume = {99}, journal = {Free Radical Biology and Medicine}, doi = {10.1016/j.freeradbiomed.2016.08.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187186}, pages = {608-622}, year = {2016}, abstract = {Resveratrol has gained tremendous interest owing to multiple reported health-beneficial effects. However, the underlying key mechanism of action of this natural product remained largely controversial. Here, we demonstrate that under physiologically relevant conditions major biological effects of resveratrol can be attributed to its generation of oxidation products such as reactive oxygen species (ROS). At low nontoxic concentrations (in general < 50 mu M), treatment with resveratrol increased viability in a set of representative cell models, whereas application of quenchers of ROS completely truncated these beneficial effects. Notably, resveratrol treatment led to mild, Nrf2-specific gene expression reprogramming. For example, in primary epidermal keratinocytes derived from human skin this coordinated process resulted in a 1.3-fold increase of endogenously generated glutathione (GSH) and subsequently in a quantitative reduction of the cellular redox environment by 2.61 mV mmol GSH per g protein. After induction of oxidative stress by using 0.78\% (v/v) ethanol, endogenous generation of ROS was consequently reduced by 24\% in resveratrol pre-treated cells. In contrast to the common perception that resveratrol acts mainly as a chemical antioxidant or as a target protein-specific ligand, we propose that the cellular response to resveratrol treatment is essentially based on oxidative triggering. In physiological microenvironments this molecular training can lead to hormetic shifting of cellular defense towards a more reductive state to improve physiological resilience to oxidative stress.}, language = {en} } @phdthesis{Bankoglu2016, author = {Bankoglu, Ezgi Eyl{\"u}l}, title = {Oxidative status and genomic damage in an obesity model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137566}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Several cohort studies showed that obesity increases the risk of chronic disease such as T2DM, hypertension and non-alcoholic fatty liver disease and various types of cancer. Different factors were described that might be involving in these diseases in obesity. Some of these suggested factors were chronic infection, elevated free fatty acids, increased ROS formation, mitochondrial dysfunction and raised NAPDH oxidase activity. Obesity is a multifactorial disease and it is very hard to distinguish between all of these factors. In this study, we wanted to focus on the association between obesity, oxidative stress and genomic damage in kidney, liver and colon, which are the most relevant organs for cancer risk according to the cohort studies. Our findings indicated elevated oxidative stress in kidney, liver and colon together with elevated lipid, RNA and DNA oxidation in the whole body. Additionally, we were able to show increased DNA damage in kidney, liver and colon. Since obesity has become an epidemic all over the world, possible therapeutic applications such as life style changes (diet and sport), pharmacological supplements and various type of surgeries are increasing. As a second question, we focused on the effect of weight loss, which is supplied either by Roux-en-Y gastric bypass surgery or by caloric restriction designed in a way to provide the same extent of weight loss, on oxidative stress and genomic damage. Our results indicated that weight loss either by gastric bypass surgery or by caloric restriction led to reduced oxidative stress and genomic damage in kidney, liver and colon. We could not find any difference between the weight loss methods, except the DNA oxidation and repair marker urinary 8-oxodG, which was still elevated after RYGB, but not after caloric restriction. It is known that hyperinsulinemia and in the long term T2DM are among the biggest concerns in obese individuals. Since we know the mutagenic potential of elevated insulin levels from previous data in our working group, the correlation between the highly mutagenic DNA DBSs marker, γ-H2AX and the plasma insulin level was tested and the findings indicated a positive correlation. In order to demonstrate the association between insulin-related oxidative stress and genomic damage, we used in vitro and in vivo models with Pten deficiency. In this part of study, the work was focused on liver. Pten is a known negative regulator of the PI3K/Akt pathway, which is responsible for the elevated NADPH oxidase activity and mitochondrial dysfunction through elevated insulin levels. Pten inhibition or deficiency were used to sensitize the system to insulin. Non-transformed immortalized human hepatocytes were used to show the mutagenic potential of elevated insulin and these in vitro data revealed once more the link between insulin signaling, elevated oxidative stress and genomic damage. Since the metabolic function of the liver is not only due to the extent of the hepatic insulin response but is also affected by systemic interactions, a whole-body Pten haplodeficient mouse model with an additional Pten+/-/Akt2-/- group was utilized for in vivo investigation of insulin-mediated toxicity. Our findings in this model suggested that Pten deficiency alone can cause an increase in oxidative stress. HFD alone was sufficient to increase the expression of HO-1 and genomic damage significantly. Moreover, the combination (whole-body Pten haplodeficient mice fed with HFD) showed significantly elevated oxidative stress and genomic damage in mouse liver. However, Akt2 knockout could only reduce the oxidative stress and DNA damage in high fat diet fed mice significantly. All these findings demonstrated that obesity can induce oxidative stress and genomic damage. Elevated insulin levels are associated with obesity-mediated oxidative stress and genomic damage. However, the underlying mechanisms are surely multifaceted and complicated. For example, Pten as oncogene might also induce other mechanisms besides the elevation of the PI3K/Akt pathway activity. In conclusion, it is clear that oxidative stress and DNA damage are linked to obesity and that weight loss can reduce these two factors. Since DNA-damage is associated with an elevated cancer risk, it might be logical to use an antioxidant therapy in obese individuals to reduce the side effects and oxidative stress dependent mutagenicity and cancer risk in these individuals. However, much more research will be needed to support this idea experimentally.}, subject = {{\"U}bergewicht}, language = {en} } @article{SchuppAliBeegametal.2013, author = {Schupp, Nicole and Ali, Badreldin H. and Beegam, Sumyia and Al-Husseni, Isehaq and Al-Shukaili, Ahmed and Nemmar, Abderrahim and Schierling, Simone and Queisser, Nina}, title = {Effect of gum arabic on oxidative stress and inflammation in adenine-induced chronic renal failure in rats}, series = {PLoS One}, journal = {PLoS One}, doi = {10.1371/journal.pone.0055242}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95787}, year = {2013}, abstract = {Inflammation and oxidative stress are known to be involved in the pathogenesis of chronic kidney disease in humans, and in chronic renal failure (CRF) in rats. The aim of this work was to study the role of inflammation and oxidative stress in adenine-induced CRF and the effect thereon of the purported nephroprotective agent gum arabic (GA). Rats were divided into four groups and treated for 4 weeks as follows: control, adenine in feed (0.75\%, w/w), GA in drinking water (15\%, w/v) and adenine+GA, as before. Urine, blood and kidneys were collected from the rats at the end of the treatment for analysis of conventional renal function tests (plasma creatinine and urea concentration). In addition, the concentrations of the pro-inflammatory cytokine TNF-a and the oxidative stress markers glutathione and superoxide dismutase, renal apoptosis, superoxide formation and DNA double strand break frequency, detected by immunohistochemistry for c-H2AX, were measured. Adenine significantly increased the concentrations of urea and creatinine in plasma, significantly decreased the creatinine clearance and induced significant increases in the concentration of the measured inflammatory mediators. Further, it caused oxidative stress and DNA damage. Treatment with GA significantly ameliorated these actions. The mechanism of the reported salutary effect of GA in adenine-induced CRF is associated with mitigation of the adenine-induced inflammation and generation of free radicals.}, language = {en} } @phdthesis{Rajaraman2011, author = {Rajaraman, Gnana Oli}, title = {Oxidative stress: Role in genomic damage and disease}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64869}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Bei einem Ungleichgewicht zwischen reaktiven Sauerstoffspezies (ROS) und endogenen Antioxidantien (Glutathion (GSH), Superoxiddismutase (SOD), Katalase etc.) ist der oxidative Stress erh{\"o}ht, was zur Oxidation von Lipiden, Proteinen und DNA f{\"u}hrt. Obwohl auch oxidierte Lipide und Proteine mit steigendem Alter akkumulieren k{\"o}nnen, f{\"u}hren nur DNA-Oxidationen zu ver{\"a}nderter genomischer Information. Ein m{\"o}glicher Signalweg f{\"u}r gesteigerte ROS-Produktion ist die Aktivierung des Enzyms NADPH-Oxidase (NOX) und die damit verbundene Generierung von ROS durch viele endogene und exogene Substanzen. p47phox ist ein cytosolisches Protein, das eine wichtige Rolle bei der NOX-Aktivierung spielt. Angiotensin II (Ang II) ist ein Beispiel f{\"u}r eine endogene Verbindung, die {\"u}ber NOX-Aktivierung ROS produziert. Rosuvastatin ist ein Arzneistoff mit antioxidativen Eigenschaften (Hochregulation endogener Antioxidantien). Es geh{\"o}rt zur Gruppe der Cholesterinsenker und reduziert ausserdem erh{\"o}htes Auftreten des Angiotensin-II-Typ-1-Rezeptors (AT1R). Normalerweise ist oxidativer Stress im Alter und bei Alterskrankheiten (z. B. Parkinson-Krankheit) erh{\"o}ht. Das Ziel der vorliegenden Arbeit war, mit Hilfe unterschiedlicher Modelle in vitro und in vivo die Rolle von DNA-Schaden durch NOX-vermittelte ROS zu untersuchen und den Einfluss von ROS auf den Alterungsprozess und auf Alterskrankheiten zu bestimmen.}, subject = {Oxidativer Stress}, language = {en} }