@phdthesis{Letschert2019, author = {Letschert, Sebastian}, title = {Quantitative Analysis of Membrane Components using Super-Resolution Microscopy}, doi = {10.25972/OPUS-16213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162139}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The plasma membrane is one of the most thoroughly studied and at the same time most complex, diverse, and least understood cellular structures. Its function is determined by the molecular composition as well as the spatial arrangement of its components. Even after decades of extensive membrane research and the proposal of dozens of models and theories, the structural organization of plasma membranes remains largely unknown. Modern imaging tools such as super-resolution fluorescence microscopy are one of the most efficient techniques in life sciences and are widely used to study the spatial arrangement and quantitative behavior of biomolecules in fixed and living cells. In this work, direct stochastic optical reconstruction microscopy (dSTORM) was used to investigate the structural distribution of mem-brane components with virtually molecular resolution. Key issues are different preparation and staining strategies for membrane imaging as well as localization-based quantitative analyses of membrane molecules. An essential precondition for the spatial and quantitative analysis of membrane components is the prevention of photoswitching artifacts in reconstructed localization microscopy images. Therefore, the impact of irradiation intensity, label density and photoswitching behavior on the distribution of plasma membrane and mitochondrial membrane proteins in dSTORM images was investigated. It is demonstrated that the combination of densely labeled plasma membranes and inappropriate photoswitching rates induces artificial membrane clusters. Moreover, inhomogeneous localization distributions induced by projections of three-dimensional membrane structures such as microvilli and vesicles are prone to generate artifacts in images of biological membranes. Alternative imaging techniques and ways to prevent artifacts in single-molecule localization microscopy are presented and extensively discussed. Another central topic addresses the spatial organization of glycosylated components covering the cell membrane. It is shown that a bioorthogonal chemical reporter system consisting of modified monosaccharide precursors and organic fluorophores can be used for specific labeling of membrane-associated glycoproteins and -lipids. The distribution of glycans was visualized by dSTORM showing a homogeneous molecule distribution on different mammalian cell lines without the presence of clusters. An absolute number of around five million glycans per cell was estimated and the results show that the combination of metabolic labeling, click chemistry, and single-molecule localization microscopy can be efficiently used to study cell surface glycoconjugates. In a third project, dSTORM was performed to investigate low-expressing receptors on cancer cells which can act as targets in personalized immunotherapy. Primary multiple myeloma cells derived from the bone marrow of several patients were analyzed for CD19 expression as potential target for chimeric antigen receptor (CAR)-modified T cells. Depending on the patient, 60-1,600 CD19 molecules per cell were quantified and functional in vitro tests demonstrate that the threshold for CD19 CAR T recognition is below 100 CD19 molecules per target cell. Results are compared with flow cytometry data, and the important roles of efficient labeling and appropriate control experiments are discussed.}, subject = {Fluoreszenzmikroskopie}, language = {en} } @phdthesis{ElBashir2017, author = {ElBashir, Rasha}, title = {Development of New Mass Spectrometry-based Methods for the Analysis of Posttranslational Modifications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153731}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Posttranslational modifications (PTMs) play a crucial role in many cellular processes. They are reversible, dynamic, and highly regulated events that alter the properties of proteins and increase their functional diversity. The identification and quantification of PTMs are critical for deciphering the molecular mechanisms of PTMs-related biological processes and disease treatment and prevention. Two of the most common and important PTMs that regulate many protein functions are acetylation and phosphorylation. An important role of acetylation is the regulation of DNA/RNA-protein interactions. A prominent example for this are histones, whose tail regions are lysine-rich and can be highly acetylated at their N-terminal domain. In spite of the utmost importance of this PTM, methods that allow the accurate measuring the site-specific acetylation degree are missing. One of the challenges in quantifying the acetylation degree at an individual lysine residue of the histones N-termini is the occurrence of multiple lysines in close proximity. Herein, we describe the development of the "Fragment Ion Patchwork Quantification," a new mass spectrometry-based approach for the highly accurate quantification of sites-pecific acetylation degrees. This method combines 13C1-acetyl derivatization on the protein level, proteolysis by low-specificity proteases and quantification on the fragment ion level. Acetylation degrees are determined from the isotope patterns of acetylated b and y ions. We have shown that this approach allows determining the site-specific acetylation degrees of all lysine residues for all core histones of Trypanosoma brucei. In addition, we demonstrate the use of this approach to identify the substrate sites of histone acetyltransferases and to monitor the changes in acetylation of the histones of canonical nucleosome and transcription start site nucleosomes. Phosphorylation is one of the most common and most important PTMs. The analysis of the human genome showed that there are about 518 kinases and more than 500,000 phosphorylation sites are believed to exist in the cellular proteome. Protein phosphorylation plays a crucial role in signaling many different cell processes, such as intercellular communication, cell growth, differentiation of proliferation and apoptosis. Whereas MS-based identification and relative quantification of singly phosphorylated peptides have been greatly improved during the last decade, and large-scale analysis of thousands of phosphopeptides can now be performed on a routine-base, the analysis of multi-phosphorylated peptides is still lagging vastly behind. The low pKa value of phosphate group and the associated negative charge are considered the major source of the problems with the analysis of multi-phosphorylated peptides. These problems include the formation of phosphopeptide-metal complexes during liquid chromatography (e.g. Fe 3+), which leads to a drastic deterioration of the chromatographic properties of these peptides (peak tailing), the decreased ionization efficiencies of phosphorylated peptides compared to their unphosphorylated counterparts, the labile nature of phosphate during CID/HCD fragmentation, and the unsuitability of low-charged phosphopeptides for ETD fragmentation are the most important factors that hinder phosphorylation analysis by LC-MS/MS. Here we aimed to develop a method for improving the identification of multi-phosphorylated peptides as well as the localization of phosphorylation sites by charge-reversal derivatization of the phosphate groups. This method employs a carbodiimide-mediated phosphoramidation to converted the phosphates to stable aromatic phosphoramidates. This chemical modification of phosphosite(s) reversed the negative charge of the phosphate group(s) and increased the number of the positive charges within the phosphopeptide. This modification prevented the formation of phosphopeptide-metal ion complexes that dramatically decreases or completely diminishes the signal intensity of protonated phosphopeptides, specifically multi-phosphorylated peptides. Furthermore, the increased net charge the (phospho-)peptides made them suitable for ETD fragmentation, which generated a high number of fragment ions with high intensities that led to a better phosphopeptide identification and localization of phosphosite(s) with high confidence.}, subject = {LC-MS}, language = {en} } @phdthesis{Beer2011, author = {Beer, Meike Vanessa}, title = {Correlation of ligand density with cell behavior on bioactive hydrogel layers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74454}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Diese Arbeit besch{\"a}ftigte sich mit der Quantifizierung von Zelladh{\"a}sion vermittelnden Liganden in und auf d{\"u}nnen Hydrogelschichten, die zur Oberfl{\"a}chenmodifizierung auf Biomaterialien aufgebracht wurden. Das bereits etablierte und gut charakterisierte inerte NCO-sP(EO-stat-PO) Hydrogelsystem, das eine einfache und reproduzierbare Bioaktivierung mit Peptiden erlaubt, wurde als Basis f{\"u}r diese Arbeit verwendet. Diese Hydrogele k{\"o}nnen auf zwei Weisen funktionalisiert werden. Liganden k{\"o}nnen entweder mit der Prepolymerl{\"o}sung vor der Beschichtung gemischt (Einmischmethode) oder frische Hydrogelschichten mit einer Ligandenl{\"o}sung inkubiert werden (Inkubationsmethode). Der erste Teil dieser in drei Hauptteile unterteilten Arbeit, besch{\"a}ftigte sich mit der Konzentrationsbestimmung der Liganden in der gesamten Tiefe der Hydrogelschicht, w{\"a}hrend sich der zweite Teil auf die oberfl{\"a}chensensitive Quantifizierung von Zelladh{\"a}sion vermittelnden Molek{\"u}len an der biologischen Grenzfl{\"a}che konzentrierte. Die Ergebnisse wurden mit Zelladh{\"a}sionskinetiken verglichen. Der dritte Teil dieser Arbeit besch{\"a}ftigte sich mit der biochemischen als auch strukturellen Nachahmung der komplexen Extrazellul{\"a}rmatrix (ECM). Das ECM Protein Fibronektin (FN) wurde {\"u}ber Zucker-Lektin Anbindung pr{\"a}sentiert und Zellverhalten auf diesen biomimetischen Oberfl{\"a}chen untersucht. Ebenfalls wurde Zellverhalten in einer dreidimensionalen Faserumgebung mit identischer Oberfl{\"a}chenchemie wie in den beiden ersten Teilen dieser Arbeit untersucht und mit der Peptidkonzentration korreliert. Insgesamt, war die Hauptfragestellung in dieser Arbeit 'Wie viel?', d.h. einerseits die Ermittlung der maximalen, als auch der f{\"u}r Zelladh{\"a}sion optimalen Ligandendichte. Im ersten praktischen Teil der vorliegenden Arbeit (Klassische Quantifizierung) wurden Liganden in der gesamten Hydrogelschicht, als auch speziell in oberen Bereichen der Schichten quantifiziert. Die Untersuchung der Hydrogelschichten in Wellplatten und auf Glas funktionalisiert mit GRGDS und 125I-YRGDS erfolgte in Kapitel 3 mittels Radioaktivmessung. Wurden Hydrogelschichten mittels Inkubationsmethode funktionalisiert, konnte eine S{\"a}ttigung mit Liganden bei etwa 600 µg/mL ermittelt werden. Mittels Einmischmethode funktionalisierte Hydrogele erreichten keine maximale Ligandenkonzentration in den Schichten, mit dem Verh{\"a}ltnis 2/1 als maximales verwendetes Verh{\"a}ltnis. H{\"o}here Liganden zu Prepolymer Verh{\"a}ltnisse als 2/1 wurden jedoch nicht verwendet, um eine ausreichende Vernetzung der Hydrogele nicht zu gef{\"a}hrden. Zur Detektion mittels R{\"o}ntgenphotoelektronenspektroskopie (XPS) und Flugzeit-Sekund{\"a}rionen-Massen-spektrometrie (TOF-SIMS) (Kapitel 4) wurden eine fluorierte Aminos{\"a}ure und ein iodiertes Peptid mit den Prepolymeren in molaren Verh{\"a}ltnissen von 1/2, 1/1 und 2/1 gemischt. Beide Methoden ermittelten eine maximale Ligandenkonzentration bei Verh{\"a}ltnissen von 1/1. Zus{\"a}tzliche Liganden (2/1) f{\"u}hrten zu keiner vermehrten Anbindung. Wesentlich im Zusammenhang mit der Ligandenquantifizierung auf Biomaterialien ist, diese an der Oberfl{\"a}che, die f{\"u}r Zellen zug{\"a}nglich ist, durchzuf{\"u}hren. Im zweiten Teil dieser Arbeit (Oberfl{\"a}chensensitive Quantifizierung) kamen daher Methoden zum Einsatz, die Liganden ausschließlich auf der Oberfl{\"a}che quantifizierten. Zur Detektion mit Oberfl{\"a}chenplasmon-resonanz (SPR) und akustischer Oberfl{\"a}chenwellentechnologie (SAW) in Kapitel 5 musste die Standardbeschichtung der Hydrogele von Glas und Silikon auf Cystamin funktionalisierte Goldoberfl{\"a}chen {\"u}bertragen werden. Mittels Ellipsometrie und Rasterkraftmikroskopie (AFM) konnte nur eine d{\"u}nne und inhomogene Hydrogelbeschichtung nachgewiesen werden. Dennoch zeigten SPR und SAW die Unterbindung von Serum und Streptavidin (SA) Adsorption auf nicht funktionalisierten Schichten, jedoch eine spezifische und konzentrationsabh{\"a}ngige SA Bindung auf Hydrogelschichten, die mit Biocytin und GRGDSK-biotin funktionalisiert wurden. Die Ligandenquantifizierung mittels Enzymgekoppeltem Immunadsorptionstest (ELISA) und Enzymgekoppelten Lektinadsorptionstest (ELLA) (Kapitel 6) wurde auf Hydrogelschichten in Wellplatten und auf Glas angewendet, die mit verschiedenen Liganden mittels Inkubation und Einmischung funktionalisiert wurden. Das Modellmolek{\"u}l Biocytin, das biotinylierte Peptid GRGDSK-biotin, das ECM Protein Fibronektin (FN), als auch die Modellzucker N-Acetyl-glukosamin (GlcNAc) und N-Acetyllaktosamin (LacNAc) konnten spezifisch in verschiedenen Konzentrationen nachgewiesen werden. Beispielhaft seien hier Schichten auf Glas genannt, die mittels Einmischmethode mit GRGDSK-biotin funktionalisiert wurden, da diese zum Vergleich in Kapitel 8 herangezogen wurden. Auf diesen Oberfl{\"a}chen wurde eine maximale Peptidkonzentration auf der Oberfl{\"a}che bei einem Peptid zu Prepolymer Verh{\"a}ltnis von 1/5 ermittelt. Neben diesen verschiedenen Quantifzierungsmethoden ist die in vitro Analyse mit Zellen nicht zu vernachl{\"a}ssigen (Kapitel 7). Hierzu wurden Hydrogele auf Glas aufgebracht und mit GRGDS mittels Einmischmethode funktionalisiert. Durch Z{\"a}hlen adh{\"a}renter prim{\"a}rer humaner dermaler Fibroblasten (HDF) auf Mikroskopbildern wurde eine maximale Zelladh{\"a}sion bei dem Peptid zu Prepolymer Verh{\"a}ltnis von 1/5 festgestellt. Hingegen wurde ein Verh{\"a}ltnis von 1/2 f{\"u}r optimale Zelladh{\"a}sion ermittelt, wenn Zellen zur Quantifizierung von den Hydrogelen abgel{\"o}st und im CASY® Zellz{\"a}hler quantifiziert wurden. Zus{\"a}tzlich wurde die Zellvitalit{\"a}t durch Messung intrazellul{\"a}rer Enzymaktivit{\"a}ten gemessen, jedoch konnte kein Zusammenhang zwischen Zellvitalit{\"a}t und GRGDS Konzentration hergestellt werden. Adh{\"a}rente HDFs waren in allen F{\"a}llen vital, unabh{\"a}ngig von der Ligandenkonzentration auf der Oberfl{\"a}che. Auch die Mausfibroblasten Zelllinie NIH L929 wurde auf Hydrogelen mit verschiedenen GRGDS zu Prepolymer Verh{\"a}ltnissen durch Z{\"a}hlen adh{\"a}renter Zellen auf Mikroskopbildern untersucht. Diese im Verh{\"a}ltnis zu HDFs wesentlich kleineren Mauszellen ben{\"o}tigten h{\"o}here GRGDS Konzentrationen (2/1) f{\"u}r maximale Zelladh{\"a}sion. Nach der Ligandenquantifizierung in Kapitel 3 bis 7, wurden diese Ergebnisse in Kapitel 8 miteinander verglichen. Hierzu wurden Messungen auf Hydrogelschichten verwendet, die mittels Einmischmethode funktionalisiert wurden. W{\"a}hrend die Quantifizierung mittels Radioaktivmessung in der gesamten Tiefe der Hydrogelschichten keine maximale Ligandenkonzentration ermitteln konnte, war in den oberen Bereichen der Schicht ein Maximum an Liganden bei 1/1 festzustellen (XPS, TOF-SIMS). SPR und SAW wurden zum Vergleich nicht herangezogen, da die Beschichtung auf Gold erst optimiert werden muss. Oberfl{\"a}chensensitive Quantifizierung mittels ELISA und Zelladh{\"a}sion, die lediglich die sterisch zug{\"a}nglichen Liganden auf einer Oberfl{\"a}che nachweisen, ergaben {\"u}bereinstimmend eine optimale Ligandenkonzentration f{\"u}r SA Bindung und Zelladh{\"a}sion bei einem Peptid zu Prepolymer Verh{\"a}ltnis von 1/5. Dies unterstreicht, wie wichtig der Vergleich der Methoden, als auch die Verwendung von oberfl{\"a}chensensitiven Methoden ist. Der dritten Teil dieser Arbeit besch{\"a}ftigte sich mit der biochemischen und strukturellen Nachahmung der komplexen extrazellul{\"a}ren Umgebung (Advanced ECM engineering), ein wichtiger Aspekt in der Biomaterialforschung, da zum gr{\"o}ßten Teil zwei-dimensionale Biomaterialien zum Einsatz kommen, die direkt mit Liganden kovalent funktionalisiert werden. Die ECM ist jedoch um ein Vielfaches komplexer und die bestm{\"o}gliche Nachahmung ist Voraussetzung f{\"u}r eine bessere Akzeptanz durch Zellen und Gewebe. In Kapitel 9 wurde eine M{\"o}glichkeit aufgezeigt, das ECM Protein FN nicht-kovalent {\"u}ber Zucker-Lektinbindungen zu immobilisieren. Ein Schichtaufbau von Hydrogel, dem darauf durch Mikrokontakt-druckverfahren (MCP) kovalent gebundenen Zucker Poly-N-Acetyllaktosamin (polyLacNAc) und den darauf nicht-kovalent gebundenen Galektin His6CGL2 und FN, konnte mit Fluoreszenzf{\"a}rbung elegant nachgewiesen werden. Optimale Konzentrationen f{\"u}r den Schichtaufbau wurden mittels ELLA/ELISA auf Hydrogelschichten ermittelt, die durch Inkubation mit dem Zucker funktionalisiert wurden. Nur der komplette Schichtaufbau konnte zufriedenstellende HDF Adh{\"a}sion vermitteln und im Vergleich zu Zellkulturpolystyrol (TCPS) Oberfl{\"a}chen konnten HDFs auf dem biomimetischen Schichtaufbau schneller adh{\"a}rieren und spreiten. Zudem wurde die Umorganisierung von auf Glas adsorbiertem FN, auf NCO-sP(EO-stat-PO) kovalent gebundenem FN und biomimetisch {\"u}ber polyLAcNAc-His6CGL2 gebundenem FN durch HDFs verglichen. Nur auf den biomimetischen Oberfl{\"a}chen schien eine Umorganisation durch die Zellen m{\"o}glich, wie sie auch in der ECM zu finden ist. Diese biomimetische und flexible Pr{\"a}sentation eines Proteins erwies sich als vielversprechende M{\"o}glichkeit eine biomimetischere Oberfl{\"a}che f{\"u}r Zellen zu schaffen, die eine optimale Biokompatibilit{\"a}t erm{\"o}glichen k{\"o}nnte. Auch die strukturelle Nachahmung der ECM ist eine vielversprechende Strategie zum Nachbau der ECM. In Kapitel 10 wurde ein Einschrittverfahren zur Herstellung synthetischer, bioaktiver und degradierbarer Faserkonstrukte durch Elektrospinnen zur Nachahmung der ECM pr{\"a}sentiert. In diesem System wurden durch Zugabe von NCO-sP(EO-stat-PO) als reaktives Additiv zu Poly(D,L-laktid-co-Glycolid) (PLGA) Fasern hergestellt, die mit einer ultrad{\"u}nnen, inerten Hydrogelschicht versehen waren. Es konnte gezeigt werden, dass durch die Verwendung von NCO-sP(EO-stat-PO) als Additiv die Adsorption von Rinderserumalbumin (BSA) im Vergleich zu PLGA um 99,2\% reduziert, die Adh{\"a}sion von HDFs verhindert und die Adh{\"a}sion von humanen mesenchymalen Stammzellen (MSC) minimiert werden konnten. Spezifische Bioaktivierung wurde durch Zugabe von Peptidsequenzen zur Spinl{\"o}sung erreicht, welche kovalent in die Hydrogelschicht eingebunden werden konnten und kontrollierte Zell-Faser Interaktionen erm{\"o}glichten, Um die spezifische Zelladh{\"a}sion an solchen inerten Fasern zu erzielen, wurde GRGDS kovalent auf der Faseroberfl{\"a}che gebunden. Dies erfolgte durch Zugabe des Peptids zur Polymerl{\"o}sung vor dem Elektrospinnen. Als Negativkontrolle wurde die Peptidsequenz GRGES an die Faseroberfl{\"a}che gebunden, welche durch Zellen nicht erkannt wird. W{\"a}hrend die Verhinderung unspezifischer Proteinadsorption f{\"u}r die Peptidmodifizierten Fasern erhalten blieb, konnten HDFs lediglich auf den mit GRGDS Peptid modifizierten Fasern adh{\"a}rieren, proliferieren und nach zwei Wochen eine konfluente Zellschicht aus vitalen Zellen bilden. Zus{\"a}tzlich konnten MSCs auf GRGDS funktionalisierten Fasern adh{\"a}rieren. Liganden konnten auf Fasern quantifiziert werden, indem die ELISA Technik aus Kapitel 6 auf Faseroberfl{\"a}chen transferiert wurde. Um das Potential der biochemischen und strukturellen Nachbildung der ECM aufzuzeigen, wurden beide Ans{\"a}tze miteinander kombiniert. Die Immobilisierung von polyLacNAc auf die Hydrogelfasern durch Inkubation und der Schichtaufbau mit His6CGL2 und FN resultierte in HDF Adh{\"a}sion.}, subject = {Hydrogel}, language = {en} }