@article{GoetzRueckschlossBalketal.2023, author = {G{\"o}tz, Lisa and Rueckschloss, Uwe and Balk, G{\"o}zde and Pfeiffer, Verena and Erg{\"u}n, S{\"u}leyman and Kleefeldt, Florian}, title = {The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1295232}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357250}, year = {2023}, abstract = {The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology.}, language = {en} } @article{AscheidBaumannFunkeetal.2023, author = {Ascheid, David and Baumann, Magdalena and Funke, Caroline and Volz, Julia and Pinnecker, J{\"u}rgen and Friedrich, Mike and H{\"o}hn, Marie and Nandigama, Rajender and Erg{\"u}n, S{\"u}leyman and Nieswandt, Bernhard and Heinze, Katrin G. and Henke, Erik}, title = {Image-based modeling of vascular organization to evaluate anti-angiogenic therapy}, series = {Biology Direct}, volume = {18}, journal = {Biology Direct}, doi = {10.1186/s13062-023-00365-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357242}, year = {2023}, abstract = {In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy.}, language = {en} } @article{MuturiDreesenNilewskietal.2013, author = {Muturi, Harrison T. and Dreesen, Janine D. and Nilewski, Elena and Jastrow, Holger and Giebel, Bernd and Ergun, Suleyman and Singer, Berhard B.}, title = {Tumor and Endothelial Cell-Derived Microvesicles Carry Distinct CEACAMs and Influence T-Cell Behavior}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {9}, issn = {1932-6203}, doi = {10.1371/journal.pone.0074654}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128373}, pages = {e74654}, year = {2013}, abstract = {Normal and malignant cells release a variety of different vesicles into their extracellular environment. The most prominent vesicles are the microvesicles (MVs, 100-1 000 nm in diameter), which are shed of the plasma membrane, and the exosomes (70-120 nm in diameter), derivates of the endosomal system. MVs have been associated with intercellular communication processes and transport numerous proteins, lipids and RNAs. As essential component of immune-escape mechanisms tumor-derived MVs suppress immune responses. Additionally, tumor-derived MVs have been found to promote metastasis, tumor-stroma interactions and angiogenesis. Since members of the carcinoembryonic antigen related cell adhesion molecule (CEACAM)-family have been associated with similar processes, we studied the distribution and function of CEACAMs in MV fractions of different human epithelial tumor cells and of human and murine endothelial cells. Here we demonstrate that in association to their cell surface phenotype, MVs released from different human epithelial tumor cells contain CEACAM1, CEACAM5 and CEACAM6, while human and murine endothelial cells were positive for CEACAM1 only. Furthermore, MVs derived from CEACAM1 transfected CHO cells carried CEACAM1. In terms of their secretion kinetics, we show that MVs are permanently released in low doses, which are extensively increased upon cellular starvation stress. Although CEACAM1 did not transmit signals into MVs it served as ligand for CEACAM expressing cell types. We gained evidence that CEACAM1-positive MVs significantly increase the CD3 and CD3/CD28-induced T-cell proliferation. All together, our data demonstrate that MV-bound forms of CEACAMs play important roles in intercellular communication processes, which can modulate immune response, tumor progression, metastasis and angiogenesis.}, language = {en} }