@article{FlorenLinsenmairMueller2022, author = {Floren, Andreas and Linsenmair, Karl Eduard and M{\"u}ller, Tobias}, title = {Diversity and functional relevance of canopy arthropods in Central Europe}, series = {Diversity}, volume = {14}, journal = {Diversity}, number = {8}, issn = {1424-2818}, doi = {10.3390/d14080660}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285924}, year = {2022}, abstract = {Although much is known about the ecology and functional importance of canopy arthropods in temperate forests, few studies have tried to assess the overall diversity and investigate the composition and dynamics of tree-specific communities. This has impeded a deeper understanding of the functioning of forests, and of how to maintain system services. Here, we present the first comprehensive data of whole arthropod communities, collected by insecticidal knockdown (fogging) from 1159 trees in 18 study areas in Central Europe during the last 25 years. The data includes 3,253,591 arthropods from 32 taxa (order, suborder, family) collected on 24 tree species from 18 genera. Fogging collects free-living, ectophytic arthropods in approximately the same number as they occur in the trees. To our knowledge, these are the most comprehensive data available today on the taxonomic composition of arboreal fauna. Assigning all arthropods to their feeding guild provided a proxy of their functional importance. The data showed that the canopy communities were regularly structured, with a clear dominance hierarchy comprised of eight 'major taxa' that represented 87\% of all arthropods. Despite significant differences in the proportions of taxa on deciduous and coniferous trees, the composition of the guilds was very similar. The individual tree genera, on the other hand, showed significant differences in guild composition, especially when different study areas and years were compared, whereas tree-specific traits, such as tree height, girth in breast height or leaf cover, explained little of the overall variance. On the ordinal level, guild composition also differed significantly between managed and primary forests, with a simultaneous low within-group variability, indicating that management is a key factor determining the distribution of biodiversity and guild composition.}, language = {en} } @article{UteReisbergHildebrandtetal.2013, author = {Ute, Hentschel and Reisberg, Eva E. and Hildebrandt, Ulrich and Riederer, Markus}, title = {Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0078613}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96699}, year = {2013}, abstract = {The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed "core" community) while others were positively or negatively affected by the wax mutant phenotype (termed "plant line-specific" community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria.}, language = {en} }