@phdthesis{Gross2022, author = {Gross, Carina}, title = {The role of platelets in hepatic ischemia reperfusion injury in mice}, doi = {10.25972/OPUS-21618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216180}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Platelets are the second most abundant blood cells and their main function is maintenance of vascular integrity. In addition, platelets are increasingly recognized as cells with immune functions, as they participate in the recruitment of immune cells and modulate the progression and severity of an immune response. So-called lipid mediators, which are - besides other cells - released by activated platelets, influence the immune response. LTB4 is one of these potent lipid mediators and is able to activate neutrophils and induce their infiltration into injured tissue. In order to investigate the involvement of platelets in inflammatory processes, a murine model of hepatic ischemia reperfusion injury as well as confocal intravital microscopy of the liver were established. Both methods were used to analyze the influence of platelets on the inflammation that follows sterile liver inflammation. We found platelet function to be unaltered after three hours of reperfusion and platelet aggregation to be irrelevant for the outcome of hepatic ischemia reperfusion injury. However, a strong impact of the GPIb-vWF axis could be observed, as antibody mediated blockade of GPIb as well as vWF-deficiency significantly reduced liver damage markers and decreased neutrophil infiltration. GPIb-IL-4R mice were used to exclude the possibility that the protective effects of the anti-GPIbα antibody treatment (p0p/B) results from something else than blocking GPIbα. Furthermore, the slope of neutrophil infiltration was decreased in p0p/B-treated mice, leading to overall decreased neutrophil numbers in the liver after three hours of reperfusion. Blockade of the integrin αIIbβ3, however, showed no reduction in neutrophil infiltration into the post-ischemic liver, in line with unaltered liver damage. To study the role of leukotriene B4, conditional and constitutive knockout mice for the LTA4 hydrolase, which catalyzes the last step in LTB4 synthesis, were generated. Lta4h deficiency did not affect general platelet functionality in hemostasis and thrombosis. Interestingly, Lta4h-/- mice were not protected from cellular damage following hepatic ischemia, despite lower neutrophil numbers in the post-ischemic liver. Intravital microscopy of the pancreas was established and revealed increased CD4+ T cell numbers in GPVI-deficient animals compared to WT controls in line with the pre-diabetic phenotype of Gp6-/- mice that was revealed in Grzegorz Sumara's group. Furthermore, platelet 'behavior' in pancreatic islets was observed following glucose injection. We found a high number of platelets adherent to islet sinusoids under basal conditions and no rolling/decelerating of platelets following glucose injection. This was accompanied by temporary sinusoidal constriction and stop of the blood flow. This phenomenon was not observed in control settings (injection of PBS, insulin or L-glucose). In a side project, which was carried out jointly with Tobias Heib, a side by side comparison of the classical syringe-based flushing and the centrifugation-based spinning method to isolate murine bone marrow was conducted. Flow cytometry revealed no differences in the distribution of hematopoietic stem cells and immune cells and functional analysis with primary and cultured megakaryocytes (MKs) showed comparable results in all conducted assays. Thus, our data demonstrated that the faster and more efficient spinning method can be used for the isolation of bone marrow cells.}, language = {en} } @article{LeistnerSommerKanofskyetal.2019, author = {Leistner, Marcus and Sommer, Stefanie and Kanofsky, Peer and Leyh, Rainer and Sommer, Sebastian-Patrick}, title = {Ischemia time impacts on respiratory chain functions and Ca\(^{2+}\)-handling of cardiac subsarcolemmal mitochondria subjected to ischemia reperfusion injury}, series = {Journal of Cardiothoracic Surgery}, volume = {14}, journal = {Journal of Cardiothoracic Surgery}, doi = {10.1186/s13019-019-0911-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236455}, year = {2019}, abstract = {Background Mitochondrial impairment can result from myocardial ischemia reperfusion injury (IR). Despite cardioplegic arrest, IR-associated cardiodepression is a major problem in heart surgery. We determined the effect of increasing ischemia time on the respiratory chain (RC) function, the inner membrane polarization and Ca\(^{2+}\) homeostasis of rat cardiac subsarcolemmal mitochondria (SSM). Methods Wistar rat hearts were divided into 4 groups of stop-flow induced warm global IR using a pressure-controlled Langendorff system: 0, 15, 30 and 40 min of ischemia with 30 min of reperfusion, respectively. Myocardial contractility was determined from left ventricular pressure records (dP/dt, dPmax) with an intraventricular balloon. Following reperfusion, SSM were isolated and analyzed regarding electron transport chain (ETC) coupling by polarography (Clark-Type electrode), membrane polarization (JC1 fluorescence) and Ca2+-handling in terms of Ca\(^{2+}\)-induced swelling and Ca\(^{2+}\)-uptake/release (Calcium Green-5 N® fluorescence). Results LV contractility and systolic pressure during reperfusion were impaired by increasing ischemic times. Ischemia reduced ETC oxygen consumption in IR40/30 compared to IR0/30 at complex I-V (8.1 ± 1.2 vs. 18.2 ± 2.0 nmol/min) and II-IV/V (16.4 ± 2.6/14.8 ± 2.3 vs. 2.3 ± 0.6 nmol/min) in state 3 respiration (p < 0.01). Relative membrane potential revealed a distinct hyperpolarization in IR30/30 and IR40/30 (171.5 ± 17.4\% and 170.9 ± 13.5\%) compared to IR0/30 (p < 0.01), wearing off swiftly after CCCP-induced uncoupling. Excess mitochondrial permeability transition pore (mPTP)-gated Ca\(^{2+}\)-induced swelling was recorded in all groups and was most pronounced in IR40/30. Pyruvate addition for mPTP blocking strongly reduced SSM swelling in IR40/30 (relative AUC, ± pyruvate; IR0/30: 1.00 vs. 0.61, IR15/30: 1.68 vs. 1.00, IR30/30: 1.42 vs. 0.75, IR40/30: 1.97 vs. 0.85; p < 0.01). Ca2+-uptake remained unaffected by previous IR. Though Ca\(^{2+}\)-release was delayed for ≥30 min of ischemia (p < 0.01), Ca\(^{2+}\) retention was highest in IR15/30 (RFU; IR0/30: 6.3 ± 3.6, IR 15/30 42.9 ± 5.0, IR30/30 15.9 ± 3.8, IR40/30 11.5 ± 6.6; p ≤ 0.01 for IR15/30 against all other groups). Conclusions Ischemia prolongation in IR injury gradually impaired SSM in terms of respiratory chain function and Ca\(^{2+}\)-homeostasis. Membrane hyperpolarization appears to be responsible for impaired Ca2+-cycling and ETC function. Ischemia time should be considered an important factor influencing IR experimental data on subsarcolemmal mitochondria. Periods of warm global ischemia should be minimized during cardiac surgery to avoid excessive damage to SSMs.}, language = {en} }