@article{SchoenfelderMarincolaGeigeretal.2013, author = {Schoenfelder, Sonja M. K. and Marincola, Gabriella and Geiger, Tobias and Goerke, Christiane and Wolz, Christiane and Ziebuhr, Wilma}, title = {Methionine Biosynthesis in Staphylococcus aureus Is Tightly Controlled by a Hierarchical Network Involving an Initiator tRNA-Specific T-box Riboswitch}, series = {PLoS Pathogens}, volume = {9}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1003606}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130365}, pages = {e1003606}, year = {2013}, abstract = {Abstract In line with the key role of methionine in protein biosynthesis initiation and many cellular processes most microorganisms have evolved mechanisms to synthesize methionine de novo. Here we demonstrate that, in the bacterial pathogen Staphylococcus aureus, a rare combination of stringent response-controlled CodY activity, T-box riboswitch and mRNA decay mechanisms regulate the synthesis and stability of methionine biosynthesis metICFE-mdh mRNA. In contrast to other Bacillales which employ S-box riboswitches to control methionine biosynthesis, the S. aureus metICFE-mdh mRNA is preceded by a 5′-untranslated met leader RNA harboring a T-box riboswitch. Interestingly, this T-box riboswitch is revealed to specifically interact with uncharged initiator formylmethionyl-tRNA \((tRNA_i^{fMet})\)while binding of elongator \(tRNA^{Met}\) proved to be weak, suggesting a putative additional function of the system in translation initiation control. met leader RNA/metICFE-mdh operon expression is under the control of the repressor CodY which binds upstream of the met leader RNA promoter. As part of the metabolic emergency circuit of the stringent response, methionine depletion activates RelA-dependent (p)ppGpp alarmone synthesis, releasing CodY from its binding site and thereby activating the met leader promoter. Our data further suggest that subsequent steps in metICFE-mdh transcription are tightly controlled by the 5′ met leader-associated T-box riboswitch which mediates premature transcription termination when methionine is present. If methionine supply is limited, and hence \((tRNA_i^{fMet})\) becomes uncharged, full-length met leader/metICFE-mdh mRNA is transcribed which is rapidly degraded by nucleases involving RNase J2. Together, the data demonstrate that staphylococci have evolved special mechanisms to prevent the accumulation of excess methionine. We hypothesize that this strict control might reflect the limited metabolic capacities of staphylococci to reuse methionine as, other than Bacillus, staphylococci lack both the methionine salvage and polyamine synthesis pathways. Thus, methionine metabolism might represent a metabolic Achilles' heel making the pathway an interesting target for future anti-staphylococcal drug development. Author Summary Prokaryote metabolism is key for our understanding of bacterial virulence and pathogenesis and it is also an area with huge opportunity to identify novel targets for antibiotic drugs. Here, we have addressed the so far poorly characterized regulation of methionine biosynthesis in S. aureus. We demonstrate that methionine biosynthesis control in staphylococci significantly differs from that predicted for other Bacillales. Notably, involvement of a T-box instead of an S-box riboswitch separates staphylococci from other bacteria in the order. We provide, for the first time, direct experimental proof for an interaction of a methionyl-tRNA-specific T-box with its cognate tRNA, and the identification of initiator \((tRNA_i^{fMet})\) as the specific binding partner is an unexpected finding whose exact function in Staphylococcus metabolism remains to be established. The data further suggest that in staphylococci a range of regulatory elements are integrated to form a hierarchical network that elegantly limits costly (excess) methionine biosynthesis and, at the same time, reliably ensures production of the amino acid in a highly selective manner. Our findings open a perspective to exploit methionine biosynthesis and especially its T-box-mediated control as putative target(s) for the development of future anti-staphylococcal therapeutics.}, language = {en} } @article{LioliouSharmaCaldelarietal.2012, author = {Lioliou, Efthimia and Sharma, Cynthia M. and Caldelari, Isabelle and Helfer, Anne-Catherine and Fechter, Pierre and Vandenesch, Fran{\c{c}}ois and Vogel, J{\"o}rg and Romby, Pascale}, title = {Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression}, series = {PLoS Genetics}, volume = {8}, journal = {PLoS Genetics}, number = {6}, doi = {10.1371/journal.pgen.1002782}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127219}, pages = {e1002782}, year = {2012}, abstract = {RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo. Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III-mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44\% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III.}, language = {en} }