@phdthesis{Meller2020, author = {Meller, Jan Maximilian}, title = {Data-driven Operations Management: Combining Machine Learning and Optimization for Improved Decision-making}, doi = {10.25972/OPUS-20604}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206049}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {This dissertation consists of three independent, self-contained research papers that investigate how state-of-the-art machine learning algorithms can be used in combination with operations management models to consider high dimensional data for improved planning decisions. More specifically, the thesis focuses on the question concerning how the underlying decision support models change structurally and how those changes affect the resulting decision quality. Over the past years, the volume of globally stored data has experienced tremendous growth. Rising market penetration of sensor-equipped production machinery, advanced ways to track user behavior, and the ongoing use of social media lead to large amounts of data on production processes, user behavior, and interactions, as well as condition information about technical gear, all of which can provide valuable information to companies in planning their operations. In the past, two generic concepts have emerged to accomplish this. The first concept, separated estimation and optimization (SEO), uses data to forecast the central inputs (i.e., the demand) of a decision support model. The forecast and a distribution of forecast errors are then used in a subsequent stochastic optimization model to determine optimal decisions. In contrast to this sequential approach, the second generic concept, joint estimation-optimization (JEO), combines the forecasting and optimization step into a single optimization problem. Following this approach, powerful machine learning techniques are employed to approximate highly complex functional relationships and hence relate feature data directly to optimal decisions. The first article, "Machine learning for inventory management: Analyzing two concepts to get from data to decisions", chapter 2, examines performance differences between implementations of these concepts in a single-period Newsvendor setting. The paper first proposes a novel JEO implementation based on the random forest algorithm to learn optimal decision rules directly from a data set that contains historical sales and auxiliary data. Going forward, we analyze structural properties that lead to these performance differences. Our results show that the JEO implementation achieves significant cost improvements over the SEO approach. These differences are strongly driven by the decision problem's cost structure and the amount and structure of the remaining forecast uncertainty. The second article, "Prescriptive call center staffing", chapter 3, applies the logic of integrating data analysis and optimization to a more complex problem class, an employee staffing problem in a call center. We introduce a novel approach to applying the JEO concept that augments historical call volume data with features like the day of the week, the beginning of the month, and national holiday periods. We employ a regression tree to learn the ex-post optimal staffing levels based on similarity structures in the data and then generalize these insights to determine future staffing levels. This approach, relying on only few modeling assumptions, significantly outperforms a state-of-the-art benchmark that uses considerably more model structure and assumptions. The third article, "Data-driven sales force scheduling", chapter 4, is motivated by the problem of how a company should allocate limited sales resources. We propose a novel approach based on the SEO concept that involves a machine learning model to predict the probability of winning a specific project. We develop a methodology that uses this prediction model to estimate the "uplift", that is, the incremental value of an additional visit to a particular customer location. To account for the remaining uncertainty at the subsequent optimization stage, we adapt the decision support model in such a way that it can control for the level of trust in the predicted uplifts. This novel policy dominates both a benchmark that relies completely on the uplift information and a robust benchmark that optimizes the sum of potential profits while neglecting any uplift information. The results of this thesis show that decision support models in operations management can be transformed fundamentally by considering additional data and benefit through better decision quality respectively lower mismatch costs. The way how machine learning algorithms can be integrated into these decision support models depends on the complexity and the context of the underlying decision problem. In summary, this dissertation provides an analysis based on three different, specific application scenarios that serve as a foundation for further analyses of employing machine learning for decision support in operations management.}, subject = {Operations Management}, language = {en} } @phdthesis{Hauser2020, author = {Hauser, Matthias}, title = {Smart Store Applications in Fashion Retail}, doi = {10.25972/OPUS-19301}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193017}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Traditional fashion retailers are increasingly hard-pressed to keep up with their digital competitors. In this context, the re-invention of brick-and-mortar stores as smart retail environments is being touted as a crucial step towards regaining a competitive edge. This thesis describes a design-oriented research project that deals with automated product tracking on the sales floor and presents three smart fashion store applications that are tied to such localization information: (i) an electronic article surveillance (EAS) system that distinguishes between theft and non-theft events, (ii) an automated checkout system that detects customers' purchases when they are leaving the store and associates them with individual shopping baskets to automatically initiate payment processes, and (iii) a smart fitting room that detects the items customers bring into individual cabins and identifies the items they are currently most interested in to offer additional customer services (e.g., product recommendations or omnichannel services). The implementation of such cyberphysical systems in established retail environments is challenging, as architectural constraints, well-established customer processes, and customer expectations regarding privacy and convenience pose challenges to system design. To overcome these challenges, this thesis leverages Radio Frequency Identification (RFID) technology and machine learning techniques to address the different detection tasks. To optimally configure the systems and draw robust conclusions regarding their economic value contribution, beyond technological performance criteria, this thesis furthermore introduces a service operations model that allows mapping the systems' technical detection characteristics to business relevant metrics such as service quality and profitability. This analytical model reveals that the same system component for the detection of object transitions is well suited for the EAS application but does not have the necessary high detection accuracy to be used as a component of an automated checkout system.}, subject = {Laden}, language = {en} } @phdthesis{Taigel2020, author = {Taigel, Fabian Michael}, title = {Data-driven Operations Management: From Predictive to Prescriptive Analytics}, doi = {10.25972/OPUS-20651}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206514}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Autonomous cars and artificial intelligence that beats humans in Jeopardy or Go are glamorous examples of the so-called Second Machine Age that involves the automation of cognitive tasks [Brynjolfsson and McAfee, 2014]. However, the larger impact in terms of increasing the efficiency of industry and the productivity of society might come from computers that improve or take over business decisions by using large amounts of available data. This impact may even exceed that of the First Machine Age, the industrial revolution that started with James Watt's invention of an efficient steam engine in the late eighteenth century. Indeed, the prevalent phrase that calls data "the new oil" indicates the growing awareness of data's importance. However, many companies, especially those in the manufacturing and traditional service industries, still struggle to increase productivity using the vast amounts of data [for Economic Co-operation and Development, 2018]. One reason for this struggle is that companies stick with a traditional way of using data for decision support in operations management that is not well suited to automated decision-making. In traditional inventory and capacity management, some data - typically just historical demand data - is used to estimate a model that makes predictions about uncertain planning parameters, such as customer demand. The planner then has two tasks: to adjust the prediction with respect to additional information that was not part of the data but still might influence demand and to take the remaining uncertainty into account and determine a safety buffer based on the underage and overage costs. In the best case, the planner determines the safety buffer based on an optimization model that takes the costs and the distribution of historical forecast errors into account; however, these decisions are usually based on a planner's experience and intuition, rather than on solid data analysis. This two-step approach is referred to as separated estimation and optimization (SEO). With SEO, using more data and better models for making the predictions would improve only the first step, which would still improve decisions but would not automize (and, hence, revolutionize) decision-making. Using SEO is like using a stronger horse to pull the plow: one still has to walk behind. The real potential for increasing productivity lies in moving from predictive to prescriptive approaches, that is, from the two-step SEO approach, which uses predictive models in the estimation step, to a prescriptive approach, which integrates the optimization problem with the estimation of a model that then provides a direct functional relationship between the data and the decision. Following Akcay et al. [2011], we refer to this integrated approach as joint estimation-optimization (JEO). JEO approaches prescribe decisions, so they can automate the decision-making process. Just as the steam engine replaced manual work, JEO approaches replace cognitive work. The overarching objective of this dissertation is to analyze, develop, and evaluate new ways for how data can be used in making planning decisions in operations management to unlock the potential for increasing productivity. In doing so, the thesis comprises five self-contained research articles that forge the bridge from predictive to prescriptive approaches. While the first article focuses on how sensitive data like condition data from machinery can be used to make predictions of spare-parts demand, the remaining articles introduce, analyze, and discuss prescriptive approaches to inventory and capacity management. All five articles consider approach that use machine learning and data in innovative ways to improve current approaches to solving inventory or capacity management problems. The articles show that, by moving from predictive to prescriptive approaches, we can improve data-driven operations management in two ways: by making decisions more accurate and by automating decision-making. Thus, this dissertation provides examples of how digitization and the Second Machine Age can change decision-making in companies to increase efficiency and productivity.}, subject = {Maschinelles Lernen}, language = {en} }