@article{TrifaultMamontovaCossaetal.2024, author = {Trifault, Barbara and Mamontova, Victoria and Cossa, Giacomo and Ganskih, Sabina and Wei, Yuanjie and Hofstetter, Julia and Bhandare, Pranjali and Baluapuri, Apoorva and Nieto, Blanca and Solvie, Daniel and Ade, Carsten P. and Gallant, Peter and Wolf, Elmar and Larsen, Dorthe H. and Munschauer, Mathias and Burger, Kaspar}, title = {Nucleolar detention of NONO shields DNA double-strand breaks from aberrant transcripts}, series = {Nucleic Acids Research}, volume = {52}, journal = {Nucleic Acids Research}, number = {6}, doi = {10.1093/nar/gkae022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350208}, pages = {3050-3068}, year = {2024}, abstract = {RNA-binding proteins emerge as effectors of the DNA damage response (DDR). The multifunctional non-POU domain-containing octamer-binding protein NONO/p54\(^{nrb}\) marks nuclear paraspeckles in unperturbed cells, but also undergoes re-localization to the nucleolus upon induction of DNA double-strand breaks (DSBs). However, NONO nucleolar re-localization is poorly understood. Here we show that the topoisomerase II inhibitor etoposide stimulates the production of RNA polymerase II-dependent, DNA damage-inducible antisense intergenic non-coding RNA (asincRNA) in human cancer cells. Such transcripts originate from distinct nucleolar intergenic spacer regions and form DNA-RNA hybrids to tether NONO to the nucleolus in an RNA recognition motif 1 domain-dependent manner. NONO occupancy at protein-coding gene promoters is reduced by etoposide, which attenuates pre-mRNA synthesis, enhances NONO binding to pre-mRNA transcripts and is accompanied by nucleolar detention of a subset of such transcripts. The depletion or mutation of NONO interferes with detention and prolongs DSB signalling. Together, we describe a nucleolar DDR pathway that shields NONO and aberrant transcripts from DSBs to promote DNA repair.}, language = {en} } @article{HenrikssonCalderonMontanoSolvieetal.2022, author = {Henriksson, Sofia and Calder{\´o}n-Monta{\~n}o, Jos{\´e} Manuel and Solvie, Daniel and Warpman Berglund, Ulrika and Helleday, Thomas}, title = {Overexpressed c-Myc sensitizes cells to TH1579, a mitotic arrest and oxidative DNA damage inducer}, series = {Biomolecules}, volume = {12}, journal = {Biomolecules}, number = {12}, issn = {2218-273X}, doi = {10.3390/biom12121777}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297547}, year = {2022}, abstract = {Previously, we reported that MTH1 inhibitors TH588 and TH1579 selectively induce oxidative damage and kill Ras-expressing or -transforming cancer cells, as compared to non-transforming immortalized or primary cells. While this explains the impressive anti-cancer properties of the compounds, the molecular mechanism remains elusive. Several oncogenes induce replication stress, resulting in under replicated DNA and replication continuing into mitosis, where TH588 and TH1579 treatment causes toxicity and incorporation of oxidative damage. Hence, we hypothesized that oncogene-induced replication stress explains the cancer selectivity. To test this, we overexpressed c-Myc in human epithelial kidney cells (HA1EB), resulting in increased proliferation, polyploidy and replication stress. TH588 and TH1579 selectively kill c-Myc overexpressing clones, enforcing the cancer cell selective killing of these compounds. Moreover, the toxicity of TH588 and TH1579 in c-Myc overexpressing cells is rescued by transcription, proteasome or CDK1 inhibitors, but not by nucleoside supplementation. We conclude that the molecular toxicological mechanisms of how TH588 and TH1579 kill c-Myc overexpressing cells have several components and involve MTH1-independent proteasomal degradation of c-Myc itself, c-Myc-driven transcription and CDK activation.}, language = {en} }