@article{AbimannanSumathiKrishnarajasekharetal.2019, author = {Abimannan, Nagarajan and Sumathi, G. and Krishnarajasekhar, O. R. and Sinha, Bhanu and Krishnan, Padma}, title = {Clonal Clusters and Virulence Factors of Methicillin-Resistant \(Staphylococcus\) \(Aureus\): Evidence for Community-Acquired Methicillin-Resistant \(Staphylococcus\) \(Aureus\) Infiltration into Hospital Settings in Chennai, South India}, series = {Indian Journal of Medical Microbiology}, volume = {37}, journal = {Indian Journal of Medical Microbiology}, number = {3}, doi = {10.4103/ijmm.IJMM_18_271}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226963}, pages = {326-336}, year = {2019}, abstract = {Background and Objective: Staphylococcus aureus is one of the major pathogens of nosocomial infections as wells as community-acquired (CA) infections worldwide. So far, large-scale comprehensive molecular and epidemiological characterisation of S. aureus from very diverse settings has not been carried out in India. The objective of this study is to evaluate the molecular, epidemiological and virulence characteristics of S. aureus in both community and hospital settings in Chennai, southern India. Methods: S. aureus isolates were obtained from four different groups (a) healthy individuals from closed community settings, (b) inpatients from hospitals, (c) outpatients from hospitals, representing isolates of hospital-community interface and (d) HIV-infected patients to define isolates associated with the immunocompromised. Antibiotic susceptibility testing, multiplex polymerase chain reactions for detection of virulence and resistance determinants, molecular typing including Staphylococcal cassette chromosome mec (SCCmec) and agr typing, were carried out. Sequencing-based typing was done using spa and multilocus sequence typing (MLST) methods. Clonal complexes (CC) of hospital and CA methicillin-resistant S. aureus (MRSA) were identified and compared for virulence and resistance. Results and Conclusion: A total of 769 isolates of S. aureus isolates were studied. The prevalence of MRSA was found to be 7.17\%, 81.67\%, 58.33\% and 22.85\% for groups a, b, c and d, respectively. Of the four SCCmec types (I, III, IV and V) detected, SCCmec V was found to be predominant. Panton-Valentine leucocidin toxin genes were detected among MRSA isolates harbouring SCCmec IV and V. A total of 78 spa types were detected, t657 being the most prevalent. 13 MLST types belonging to 9 CC were detected. CC1 (ST-772, ST-1) and CC8 (ST238, ST368 and ST1208) were found to be predominant among MRSA. CA-MRSA isolates with SCCmec IV and V were isolated from all study groups including hospitalised patients and were found to be similar by molecular tools. This shows that CA MRSA has probably infiltrated into the hospital settings.}, language = {en} } @phdthesis{Swiderek2005, author = {Swiderek, Halina}, title = {Typing and genome comparison of Neisseria meningitidis by DNA-microarrays}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13374}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In the present thesis, two projects on the use of microarray technology for molecular epidemiology of Neisseria meningitidis have been followed. The first one evaluated microarrays based on polymorphism-directed oligonucleotide design for typing of N. meningitidis adopting the multilocus sequence typing (MLST) concept. The number of oligonucleotides needed to cover all known polymorphisms was much lower compared to the number needed if a tiling strategy would have been chosen. Initial experiments using oligonucleotides 28-32 nucleotides in length, revealed that the applied hybridisation protocols were highly specific. However, despite of several optimisation steps, the rate of misidentification of oligonucleotides remained >1.8\% in consecutive validation experiments using arrays representing the genetic diversity at three MLST loci. This finding led to the assumption that the high density of polymorphic sites and extensive GC-content variations at N. meningitidis MLST loci hindered the successful implementation of MLST microarrays based on polymorphism-directed oligonucleotide design. In the 1980s, the ET-15 clone emerged within the ST-11 complex of N. meningitidis. This new clone was associated with severe meningococcal disease and outbreaks world-wide. Therefore, the goal of the second project was to identify genetic differences between ET-15 strains and other ST-11 strains using whole genome microarray technology. Three genes encoding hypothetical proteins were identified to be present in all ET-15 strains but absent in other ST-11 strains. This finding together with unpublished observation from our group suggested that several genome alterations occurred before the clonal expansion of the ET-15 clone started. The role that these three genes play in the pathogenicity of the ET-15 clone is unclear. The genome comparisons revealed furthermore that studies of the ET-15 clone displayed approximately two-fold less gene content variation than ST-11 strains not belonging to the ET-15 clone. This finding is in accordance with the recent emergence and clonal expansion of the ET-15 variant.}, subject = {Neisseria meningitis}, language = {en} }