@phdthesis{Janz2024, author = {Janz, Anna}, title = {Human induced pluripotent stem cells (iPSCs) in inherited cardiomyopathies: Generation and characterization of an iPSC-derived cardiomyocyte model system of dilated cardiomyopathy with ataxia (DCMA)}, doi = {10.25972/OPUS-24096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240966}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The emergence of human induced pluripotent stem cells (iPSCs) and the rise of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) gene editing technology innovated the research platform for scientists based on living human pluripotent cells. The revolutionary combination of both Nobel Prize-honored techniques enables direct disease modeling especially for research focused on genetic diseases. To allow the study on mutation-associated pathomechanisms, we established robust human in vitro systems of three inherited cardiomyopathies: arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy with juvenile cataract (DCMJC) and dilated cardiomyopathy with ataxia (DCMA). Sendai virus vectors encoding OCT3/4, SOX2, KLF4, and c-MYC were used to reprogram human healthy control or mutation-bearing dermal fibroblasts from patients to an embryonic state thereby allowing the robust and efficient generation of in total five transgene-free iPSC lines. The nucleofection-mediated CRISPR/Cas9 plasmid delivery in healthy control iPSCs enabled precise and efficient genome editing by mutating the respective disease genes to create isogenic mutant control iPSCs. Here, a PKP2 knock-out and a DSG2 knock-out iPSC line were established to serve as a model of ACM. Moreover, a DNAJC19 C-terminal truncated variant (DNAJC19tv) was established to mimic a splice acceptor site mutation in DNAJC19 of two patients with the potential of recapitulating DCMA-associated phenotypes. In total eight self-generated iPSC lines were assessed matching internationally defined quality control criteria. The cells retained their ability to differentiate into cells of all three germ layers in vitro and maintained a stable karyotype. All iPSC lines exhibited a typical stem cell-like morphology as well as expression of characteristic pluripotency markers with high population purities, thus validating the further usage of all iPSC lines in in vitro systems of ACM, DCMA and DCMJC. Furthermore, cardiac-specific disease mechanisms underlying DCMA were investigated using in vitro generated iPSC-derived cardiomyocytes (iPSC-CMs). DCMA is an autosomal recessive disorder characterized by life threatening early onset cardiomyopathy associated with a metabolic syndrome. Causal mutations were identified in the DNAJC19 gene encoding an inner mitochondrial membrane (IMM) protein with a presumed function in mitochondrial biogenesis and cardiolipin (CL) remodeling. In total, two DCMA patient-derived iPSC lines (DCMAP1, DCMAP2) of siblings with discordant cardiac phenotypes, a third isogenic mutant control iPSC line (DNAJC19tv) as well as two control lines (NC6M and NC47F) were directed towards the cardiovascular lineage upon response to extracellular specification cues. The monolayer cardiac differentiation approach was successfully adapted for all five iPSC lines and optimized towards ventricular subtype identity, higher population purities and enhanced maturity states to fulfill all DCMA-specific requirements prior to phenotypic investigations. To provide a solid basis for the study of DCMA, the combination of lactate-based metabolic enrichment, magnetic-activated cell sorting, mattress-based cultivation and prolonged cultivation time was performed in an approach-dependent manner. The application of the designated strategies was sufficient to ensure adult-like characteristics, which included at least 60-day-old iPSC-CMs. Therefore, the novel human DCMA platform was established to enable the study of the pathogenesis underlying DCMA with respect to structural, morphological and functional changes. The disease-associated protein, DNAJC19, is constituent of the TIM23 import machinery and can directly interact with PHB2, a component of the membrane bound hetero-oligomeric prohibitin ring complexes that are crucial for phospholipid and protein clustering in the IMM. DNAJC19 mutations were predicted to cause a loss of the DnaJ interaction domain, which was confirmed by loss of full-length DNAJC19 protein in all mutant cell lines. The subcellular investigation of DNAJC19 demonstrated a nuclear restriction in mutant iPSC-CMs. The loss of DNAJC19 co-localization with mitochondrial structures was accompanied by enhanced fragmentation, an overall reduction of mitochondrial mass and smaller cardiomyocytes. Ultrastructural analysis yielded decreased mitochondria sizes and abnormal cristae providing a link to defects in mitochondrial biogenesis and CL remodeling. Preliminary data on CL profiles revealed longer acyl chains and a more unsaturated acyl chain composition highlighting abnormities in the phospholipid maturation in DCMA. However, the assessment of mitochondrial function in iPSCs and dermal fibroblasts revealed an overall higher oxygen consumption that was even more enhanced in iPSC-CMs when comparing all three mutants to healthy controls. Excess oxygen consumption rates indicated a higher electron transport chain (ETC) activity to meet cellular ATP demands that probably result from proton leakage or the decoupling of the ETC complexes provoked by abnormal CL embedding in the IMM. Moreover, in particular iPSC-CMs presented increased extracellular acidification rates that indicated a shift towards the utilization of other substrates than fatty acids, such as glucose, pyruvate or glutamine. The examination of metabolic features via double radioactive tracer uptakes (18F-FDG, 125I-BMIPP) displayed significantly decreased fatty acid uptake in all mutants that was accompanied by increased glucose uptake in one patient cell line only, underlining a highly dynamic preference of substrates between mutant iPSC-CMs. To connect molecular changes directly to physiological processes, insights on calcium kinetics, contractility and arrhythmic potential were assessed and unraveled significantly increased beating frequencies, elevated diastolic calcium concentrations and a shared trend towards reduced cell shortenings in all mutant cell lines basally and upon isoproterenol stimulation. Extended speed of recovery was seen in all mutant iPSC-CMs but most striking in one patient-derived iPSC-CM model, that additionally showed significantly prolonged relaxation times. The investigations of calcium transient shapes pointed towards enhanced arrhythmic features in mutant cells comprised by both the occurrence of DADs/EADs and fibrillation-like events with discordant preferences. Taken together, new insights into a novel in vitro model system of DCMA were gained to study a genetically determined cardiomyopathy in a patient-specific manner upon incorporation of an isogenic mutant control. Based on our results, we suggest that loss of full-length DNAJC19 impedes PHB2-complex stabilization within the IMM, thus hindering PHB-rings from building IMM-specific phospholipid clusters. These clusters are essential to enable normal CL remodeling during cristae morphogenesis. Disturbed cristae and mitochondrial fragmentation were observed and refer to an essential role of DNAJC19 in mitochondrial morphogenesis and biogenesis. Alterations in mitochondrial morphology are generally linked to reduced ATP yields and aberrant reactive oxygen species production thereby having fundamental downstream effects on the cardiomyocytes` functionality. DCMA-associated cellular dysfunctions were in particular manifested in excess oxygen consumption, altered substrate utilization and abnormal calcium kinetics. The summarized data highlight the usage of human iPSC-derived CMs as a powerful tool to recapitulate DCMA-associated phenotypes that offers an unique potential to identify therapeutic strategies in order to reverse the pathological process and to pave the way towards clinical applications for a personalized therapy of DCMA in the future.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{Kutschka2024, author = {Kutschka, Ilona}, title = {Activation of the integrated stress response induces remodeling of cardiac metabolism in Barth Syndrome}, doi = {10.25972/OPUS-35818}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358186}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Barth Syndrome (BTHS) is an inherited X-chromosomal linked disorder, characterized by early development of cardiomyopathy, immune system defects, skeletal muscle myopathy and growth retardation. The disease displays a wide variety of symptoms including heart failure, exercise intolerance and fatigue due to the muscle weakness. The cause of the disease are mutations in the gene encoding for the mitochondrial transacylase Tafazzin (TAZ), which is important for remodeling of the phospholipid cardiolipin (CL). All mutations result in a pronounced decrease of the functional enzyme leading to an increase of monolysocardiolipin (MLCL), the precursor of mature CL, and a decrease in mature CL itself. CL is a hallmark phospholipid of mitochondrial membranes, highly enriched in the inner mitochondrial membrane (IMM). It is not only important for the formation of the cristae structures, but also for the function of different protein complexes associated with the mitochondrial membrane. Reduced levels of mature CL cause remodeling of the respiratory chain supercomplexes, impaired respiration, defects in the Krebs cycle and a loss of mitochondrial calcium uniporter (MCU) protein. The defective Ca2+ handling causes impaired redox homeostasis and energy metabolism resulting in cellular arrhythmias and defective electrical conduction. In an uncompensated situation, blunting mitochondrial Ca2+ uptake provokes increased mitochondrial emission of H2O2 during workload transitions, related to oxidation of NADPH, which is required to regenerate anti-oxidative enzymes. However, in the hearts and cardiac myocytes of mice with a global knock-down of the Taz gene (Taz-KD), no increase in mitochondrial ROS was observed, suggesting that other metabolic pathways may have compensated for reduced Krebs cycle activation. The healthy heart produces most of its energy by consuming fatty acids. In this study, the fatty acid uptake into mitochondria and their further degradation was investigated, which showed a switch of the metabolism in general in the Taz-KD mouse model. In vivo studies revealed an increase of glucose uptake into the heart and decreased fatty acid uptake and oxidation. Disturbed energy conversion resulted in activation of retrograde signaling pathways, implicating overall changes in the cell metabolism. Upregulated integrated stress response (ISR) was confirmed by increased levels of the downstream target, i.e., the activating transcription factor 4 (ATF4). A Tafazzin knockout mouse embryonal fibroblast cell model (TazKO) was used to inhibit the ISR using siRNA transfection or pharmaceutical inhibition. This verified the central role of II the ISR in regulating the metabolism in BTHS. Moreover, an increased metabolic flux into glutathione biosynthesis was observed, which supports redox homeostasis. In vivo PET-CT scans depicted elevated activity of the xCT system in the BTHS mouse heart, which transports essential amino acids for the biosynthesis of glutathione precursors. Furthermore, the stress induced signaling pathway also affected the glutamate metabolism, which fuels into the Krebs cycle via -ketoglutarate and therefore supports energy converting pathways. In summary, this thesis provides novel insights into the energy metabolism and redox homeostasis in Barth syndrome cardiomyopathy and its regulation by the integrated stress response, which plays a central role in the metabolic alterations. The aim of the thesis was to improve the understanding of these metabolic changes and to identify novel targets, which can provide new possibilities for therapeutic intervention in Barth syndrome.}, subject = {Herzmuskelkrankheit}, language = {en} } @phdthesis{Hock2024, author = {Hock, Michael}, title = {Methods for Homogenization of Spatio-Temporal B\(_0\) Magnetic Field Variations in Cardiac MRI at Ultra-High Field Strength}, doi = {10.25972/OPUS-34821}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348213}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Cardiovascular disease is one of the leading causes of death worldwide and, so far, echocardiography, nuclear cardiology, and catheterization are the gold standard techniques used for its detection. Cardiac magnetic resonance (CMR) can replace the invasive imaging modalities and provide a "one-stop shop" characterization of the cardiovascular system by measuring myocardial tissue structure, function and perfusion of the heart, as well as anatomy of and flow in the coronary arteries. In contrast to standard clinical magnetic resonance imaging (MRI) scanners, which are often operated at a field strength of 1.5 or 3 Tesla (T), a higher resolution and subsequent cardiac parameter quantification could potentially be achieved at ultra-high field, i.e., 7 T and above. Unique insights into the pathophysiology of the heart are expected from ultra-high field MRI, which offers enhanced image quality in combination with novel contrast mechanisms, but suffers from spatio-temporal B0 magnetic field variations. Due to the resulting spatial misregistration and intra-voxel dephasing, these B0-field inhomogeneities generate a variety of undesired image artifacts, e.g., artificial image deformation. The resulting macroscopic field gradients lead to signal loss, because the effective transverse relaxation time T2* is shortened. This affects the accuracy of T2* measurements, which are essential for myocardial tissue characterization. When steady state free precession-based pulse sequences are employed for image acquisition, certain off-resonance frequencies cause signal voids. These banding artifacts complicate the proper marking of the myocardium and, subsequently, systematic errors in cardiac function measurements are inevitable. Clinical MR scanners are equipped with basic shim systems to correct for occurring B0-field inhomogeneities and resulting image artifacts, however, these are not sufficient for the advanced measurement techniques employed for ultra-high field MRI of the heart. Therefore, this work focused on the development of advanced B0 shimming strategies for CMR imaging applications to correct the spatio-temporal B0 field variations present in the human heart at 7 T. A novel cardiac phase-specific shimming (CPSS) technique was set up, which featured a triggered B0 map acquisition, anatomy-matched selection of the shim-region-of-interest (SROI), and calibration-based B0 field modeling. The influence of technical limitations on the overall spherical harmonics (SH) shim was analyzed. Moreover, benefits as well as pitfalls of dynamic shimming were debated in this study. An advanced B0 shimming strategy was set up and applied in vivo, which was the first implementation of a heart-specific shimming approach in human UHF MRI at the time. The spatial B0-field patterns which were measured in the heart throughout this study contained localized spots of strong inhomogeneities. They fluctuated over the cardiac cycle in both size and strength, and were ideally addressed using anatomy-matched SROIs. Creating a correcting magnetic field with one shim coil, however, generated eddy currents in the surrounding conducting structures and a resulting additional, unintended magnetic field. Taking these shim-to-shim interactions into account via calibration, it was demonstrated for the first time that the non-standard 3rd-order SH terms enhanced B0-field homogeneity in the human heart. However, they were attended by challenges for the shim system hardware employed in the presented work, which was indicated by the currents required to generate the optimal 3rd-order SH terms exceeding the dynamic range of the corresponding shim coils. To facilitate dynamic shimming updated over the cardiac cycle for cine imaging, the benefit of adjusting the oscillating CPSS currents was found to be vital. The first in vivo application of the novel advanced B0 shimming strategy mostly matched the simulations. The presented technical developments are a basic requirement to quantitative and functional CMR imaging of the human heart at 7 T. They pave the way for numerous clinical studies about cardiac diseases, and continuative research on dedicated cardiac B0 shimming, e.g., adapted passive shimming and multi-coil technologies.}, subject = {Kernspintomografie}, language = {en} } @article{JanzWalzCirnuetal.2024, author = {Janz, Anna and Walz, Katharina and Cirnu, Alexandra and Surjanto, Jessica and Urlaub, Daniela and Leskien, Miriam and Kohlhaas, Michael and Nickel, Alexander and Brand, Theresa and Nose, Naoko and W{\"o}rsd{\"o}rfer, Philipp and Wagner, Nicole and Higuchi, Takahiro and Maack, Christoph and Dudek, Jan and Lorenz, Kristina and Klopocki, Eva and Erg{\"u}n, S{\"u}leyman and Duff, Henry J. and Gerull, Brenda}, title = {Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes}, series = {Molecular Metabolism}, volume = {79}, journal = {Molecular Metabolism}, issn = {2212-8778}, doi = {10.1016/j.molmet.2023.101859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350393}, year = {2024}, abstract = {Highlights • Loss of DNAJC19's DnaJ domain disrupts cardiac mitochondrial structure, leading to abnormal cristae formation in iPSC-CMs. • Impaired mitochondrial structures lead to an increased mitochondrial respiration, ROS and an elevated membrane potential. • Mutant iPSC-CMs show sarcomere dysfunction and a trend to more arrhythmias, resembling DCMA-associated cardiomyopathy. Background Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. Methods We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca\(^{2+}\) kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tv\(_{HeLa}\)). Results Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca\(^{2+}\) concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. Conclusions Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca\(^{2+}\) kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.}, language = {en} } @phdthesis{Hapke2023, author = {Hapke, Nils}, title = {Cardiac antigen derived T cell epitopes in the frame of myocardial infarction}, doi = {10.25972/OPUS-30196}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301963}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Cardiovascular disease and the acute consequence of myocardial infarc- tion remain one of the most important causes of morbidity and mortality in all western societies. While much progress has been made in mitigating the acute, life-threatening ischemia caused by infarction, heart failure of the damaged my- ocardium remains prevalent. There is mounting evidence for the role of T cells in the healing process after myocardial infarction, but relevant autoantigens, which might trigger and regulate adaptive immune involvement have not been discov- ered in patients. In this work, we discovered an autoantigenic epitope in the adrenergic receptor beta 1, which is highly expressed in the heart. This autoantigenic epitope causes a pro-inflammatory immune reaction in T cells isolated from pa- tients after myocardial infarction (MI) but not in control patients. This immune reaction was only observed in a subset of MI patients, which carry at least one allele of the HLA-DRB1*13 family. Interestingly, HLA-DRB1*13 was more com- monly expressed in patients in the MI group than in the control group. Taken together, our data suggests antigen-specific priming of T cells in MI patients, which leads to a pro-inflammatory phenotype. The primed T cells react to a cardiac derived autoantigen ex vivo and are likely to exhibit a similar phenotype in vivo. This immune phenotype was only observed in a certain sub- set of patients sharing a common HLA-allele, which was more commonly ex- pressed in MI patients, suggesting a possible role as a risk factor for cardiovas- cular disease. While our results are observational and do not have enough power to show strong clinical associations, our discoveries provide an essential tool to further our understanding of involvement of the immune system in cardiovascu- lar disease. We describe the first cardiac autoantigen in the clinical context of MI and provide an important basis for further translational and clinical research in cardiac autoimmunity.}, subject = {Immunologie}, language = {en} } @article{KerwagenFuchsUllrichetal.2023, author = {Kerwagen, Fabian and Fuchs, Konrad F. and Ullrich, Melanie and Schulze, Andres and Straka, Samantha and Krop, Philipp and Latoschik, Marc E. and Gilbert, Fabian and Kunz, Andreas and Fette, Georg and St{\"o}rk, Stefan and Ertl, Maximilian}, title = {Usability of a mHealth solution using speech recognition for point-of-care diagnostic management}, series = {Journal of Medical Systems}, volume = {47}, journal = {Journal of Medical Systems}, number = {1}, doi = {10.1007/s10916-022-01896-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324002}, year = {2023}, abstract = {The administrative burden for physicians in the hospital can affect the quality of patient care. The Service Center Medical Informatics (SMI) of the University Hospital W{\"u}rzburg developed and implemented the smartphone-based mobile application (MA) ukw.mobile1 that uses speech recognition for the point-of-care ordering of radiological examinations. The aim of this study was to examine the usability of the MA workflow for the point-of-care ordering of radiological examinations. All physicians at the Department of Trauma and Plastic Surgery at the University Hospital W{\"u}rzburg, Germany, were asked to participate in a survey including the short version of the User Experience Questionnaire (UEQ-S) and the Unified Theory of Acceptance and Use of Technology (UTAUT). For the analysis of the different domains of user experience (overall attractiveness, pragmatic quality and hedonic quality), we used a two-sided dependent sample t-test. For the determinants of the acceptance model, we employed regression analysis. Twenty-one of 30 physicians (mean age 34 ± 8 years, 62\% male) completed the questionnaire. Compared to the conventional desktop application (DA) workflow, the new MA workflow showed superior overall attractiveness (mean difference 2.15 ± 1.33), pragmatic quality (mean difference 1.90 ± 1.16), and hedonic quality (mean difference 2.41 ± 1.62; all p < .001). The user acceptance measured by the UTAUT (mean 4.49 ± 0.41; min. 1, max. 5) was also high. Performance expectancy (beta = 0.57, p = .02) and effort expectancy (beta = 0.36, p = .04) were identified as predictors of acceptance, the full predictive model explained 65.4\% of its variance. Point-of-care mHealth solutions using innovative technology such as speech-recognition seem to address the users' needs and to offer higher usability in comparison to conventional technology. Implementation of user-centered mHealth innovations might therefore help to facilitate physicians' daily work.}, language = {en} } @article{GerhardtKordsmeyerSehneretal.2023, author = {Gerhardt, Louisa M. S. and Kordsmeyer, Maren and Sehner, Susanne and G{\"u}der, G{\"u}lmisal and St{\"o}rk, Stefan and Edelmann, Frank and Wachter, Rolf and Pankuweit, Sabine and Prettin, Christiane and Ertl, Georg and Wanner, Christoph and Angermann, Christiane E.}, title = {Prevalence and prognostic impact of chronic kidney disease and anaemia across ACC/AHA precursor and symptomatic heart failure stages}, series = {Clinical Research in Cardiology}, volume = {112}, journal = {Clinical Research in Cardiology}, number = {7}, doi = {10.1007/s00392-022-02027-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323990}, pages = {868-879}, year = {2023}, abstract = {Background The importance of chronic kidney disease (CKD) and anaemia has not been comprehensively studied in asymptomatic patients at risk for heart failure (HF) versus those with symptomatic HF. We analysed the prevalence, characteristics and prognostic impact of both conditions across American College of Cardiology/American Heart Association (ACC/AHA) precursor and HF stages A-D. Methods and results 2496 participants from three non-pharmacological German Competence Network HF studies were categorized by ACC/AHA stage; stage C patients were subdivided into C1 and C2 (corresponding to NYHA classes I/II and III, respectively). Overall, patient distribution was 8.1\%/35.3\%/32.9\% and 23.7\% in ACC/AHA stages A/B/C1 and C2/D, respectively. These subgroups were stratified by the absence ( - ) or presence ( +) of CKD (estimated glomerular filtration rate [eGFR] < 60 mL/min/1.73m2) and anaemia (haemoglobin in women/men < 12/ < 13 g/dL). The primary outcome was all-cause mortality at 5-year follow-up. Prevalence increased across stages A/B/C1 and C2/D (CKD: 22.3\%/23.6\%/31.6\%/54.7\%; anaemia: 3.0\%/7.9\%/21.7\%/33.2\%, respectively), with concordant decreases in median eGFR and haemoglobin (all p < 0.001). Across all stages, hazard ratios [95\% confidence intervals] for all-cause mortality were 2.1 [1.8-2.6] for CKD + , 1.7 [1.4-2.0] for anaemia, and 3.6 [2.9-4.6] for CKD + /anaemia + (all p < 0.001). Population attributable fractions (PAFs) for 5-year mortality related to CKD and/or anaemia were similar across stages A/B, C1 and C2/D (up to 33.4\%, 30.8\% and 34.7\%, respectively). Conclusions Prevalence and severity of CKD and anaemia increased across ACC/AHA stages. Both conditions were individually and additively associated with increased 5-year mortality risk, with similar PAFs in asymptomatic patients and those with symptomatic HF.}, language = {en} } @article{GelbrichMorbachDeutschbeinetal.2023, author = {Gelbrich, G{\"o}tz and Morbach, Caroline and Deutschbein, Timo and Fassnacht, Martin and St{\"o}rk, Stefan and Heuschmann, Peter U.}, title = {The population comparison index: an intuitive measure to calibrate the extent of impairments in patient cohorts in relation to healthy and diseased populations}, series = {International Journal of Environmental Research and Public Health}, volume = {20}, journal = {International Journal of Environmental Research and Public Health}, number = {3}, issn = {1660-4601}, doi = {10.3390/ijerph20032168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304933}, year = {2023}, abstract = {We assume that a specific health constraint, e.g., a certain aspect of bodily function or quality of life that is measured by a variable X, is absent (or irrelevant) in a healthy reference population (Ref0), and it is materially present and precisely measured in a diseased reference population (Ref1). We further assume that some amount of this constraint of interest is suspected to be present in a population under study (SP). In order to quantify this issue, we propose the introduction of an intuitive measure, the population comparison index (PCI), that relates the mean value of X in population SP to the mean values of X in populations Ref0 and Ref1. This measure is defined as PCI[X] = (mean[X|SP] - mean[X|Ref0])/(mean[X|Ref1] - mean[X|Ref0]) × 100[\%], where mean[X|.] is the average value of X in the respective group of individuals. For interpretation, PCI[X] ≈ 0 indicates that the values of X in the population SP are similar to those in population Ref0, and hence, the impairment measured by X is not materially present in the individuals in population SP. On the other hand, PCI[X] ≈ 100 means that the individuals in SP exhibit values of X comparable to those occurring in Ref1, i.e., the constraint of interest is equally present in populations SP and Ref1. A value of 0 < PCI[X] < 100 indicates that a certain percentage of the constraint is present in SP, and it is more than in Ref0 but less than in Ref1. A value of PCI[X] > 100 means that population SP is even more affected by the constraint than population Ref1.}, language = {en} } @article{TraubFreyStoerk2023, author = {Traub, Jan and Frey, Anna and St{\"o}rk, Stefan}, title = {Chronic neuroinflammation and cognitive decline in patients with cardiac disease: evidence, relevance, and therapeutic implications}, series = {Life}, volume = {13}, journal = {Life}, number = {2}, issn = {2075-1729}, doi = {10.3390/life13020329}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304869}, year = {2023}, abstract = {Acute and chronic cardiac disorders predispose to alterations in cognitive performance, ranging from mild cognitive impairment to overt dementia. Although this association is well-established, the factors inducing and accelerating cognitive decline beyond ageing and the intricate causal pathways and multilateral interdependencies involved remain poorly understood. Dysregulated and persistent inflammatory processes have been implicated as potentially causal mediators of the adverse consequences on brain function in patients with cardiac disease. Recent advances in positron emission tomography disclosed an enhanced level of neuroinflammation of cortical and subcortical brain regions as an important correlate of altered cognition in these patients. In preclinical and clinical investigations, the thereby involved domains and cell types of the brain are gradually better characterized. Microglia, resident myeloid cells of the central nervous system, appear to be of particular importance, as they are extremely sensitive to even subtle pathological alterations affecting their complex interplay with neighboring astrocytes, oligodendrocytes, infiltrating myeloid cells, and lymphocytes. Here, we review the current evidence linking cognitive impairment and chronic neuroinflammation in patients with various selected cardiac disorders including the aspect of chronic neuroinflammation as a potentially druggable target.}, language = {en} } @article{HiguchiWerner2023, author = {Higuchi, Takahiro and Werner, Rudolf A.}, title = {Unfolding the cardioprotective potential of sigma-1 receptor-directed molecular imaging}, series = {Journal of Nuclear Cardiology}, volume = {30}, journal = {Journal of Nuclear Cardiology}, number = {2}, doi = {10.1007/s12350-022-03077-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324600}, pages = {662-664}, year = {2023}, abstract = {No abstract available.}, language = {en} }