@article{RajendranBoettigerStadelmannetal.2021, author = {Rajendran, Ranjithkumar and B{\"o}ttiger, Gregor and Stadelmann, Christine and Karnati, Srikanth and Berghoff, Martin}, title = {FGF/FGFR pathways in multiple sclerosis and in its disease models}, series = {Cells}, volume = {10}, journal = {Cells}, number = {4}, issn = {2073-4409}, doi = {10.3390/cells10040884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236594}, year = {2021}, abstract = {Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS) affecting more than two million people worldwide. In MS, oligodendrocytes and myelin sheaths are destroyed by autoimmune-mediated inflammation, while remyelination is impaired. Recent investigations of post-mortem tissue suggest that Fibroblast growth factor (FGF) signaling may regulate inflammation and myelination in MS. FGF2 expression seems to correlate positively with macrophages/microglia and negatively with myelination; FGF1 was suggested to promote remyelination. In myelin oligodendrocyte glycoprotein (MOG)\(_{35-55}\)-induced experimental autoimmune encephalomyelitis (EAE), systemic deletion of FGF2 suggested that FGF2 may promote remyelination. Specific deletion of FGF receptors (FGFRs) in oligodendrocytes in this EAE model resulted in a decrease of lymphocyte and macrophage/microglia infiltration as well as myelin and axon degeneration. These effects were mediated by ERK/Akt phosphorylation, a brain-derived neurotrophic factor, and downregulation of inhibitors of remyelination. In the first part of this review, the most important pharmacotherapeutic principles for MS will be illustrated, and then we will review recent advances made on FGF signaling in MS. Thus, we will suggest application of FGFR inhibitors, which are currently used in Phase II and III cancer trials, as a therapeutic option to reduce inflammation and induce remyelination in EAE and eventually MS.}, language = {en} } @article{RadevaWalterStachetal.2019, author = {Radeva, Mariya Y. and Walter, Elias and Stach, Ramona Alexandra and Yazdi, Amir S. and Schlegel, Nicolas and Sarig, Ofer and Sprecher, Eli and Waschke, Jens}, title = {ST18 Enhances PV-IgG-Induced Loss of Keratinocyte Cohesion in Parallel to Increased ERK Activation}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2019.00770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224910}, pages = {770, 1-11}, year = {2019}, abstract = {Pemphigus is an autoimmune blistering disease targeting the desmosomal proteins desmoglein (Dsg) 1 and Dsg3. Recently, a genetic variant of the Suppression of tumorigenicity 18 (ST18) promoter was reported to cause ST18 up-regulation, associated with pemphigus vulgaris (PV)-IgG-mediated increase in cytokine secretion and more prominent loss of keratinocyte cohesion. Here we tested the effects of PV-IgG and the pathogenic pemphigus mouse anti-Dsg3 antibody AK23 on cytokine secretion and ERK activity in human keratinocytes dependent on ST18 expression. Without ST18 overexpression, both PV-IgG and AK23 induced loss of keratinocyte cohesion which was accompanied by prominent fragmentation of Dsg3 immunostaining along cell borders. In contrast, release of pro-inflammatory cytokines such as IL-1 alpha, IL-6, TNF alpha, and IFN-gamma was not altered significantly in both HaCaT and primary NHEK cells. These experiments indicate that cytokine expression is not strictly required for loss of keratinocyte cohesion. Upon ST18 overexpression, fragmentation of cell monolayers increased significantly in response to autoantibody incubation. Furthermore, production of IL-1 alpha and IL-6 was enhanced in some experiments but not in others whereas release of TNF-alpha dropped significantly upon PV-IgG application in both EV- and ST18-transfected HaCaT cells. Additionally, in NHEK, application of PV-IgG but not of AK23 significantly increased ERK activity. In contrast, ST18 overexpression in HaCaT cells augmented ERK activation in response to both c-IgG and AK23 but not PV-IgG. Because inhibition of ERK by U0126 abolished PV-IgG- and AK23-induced loss of cell cohesion in ST18-expressing cells, we conclude that autoantibody-induced ERK activation was relevant in this scenario. In summary, similar to the situation in PV patients carrying ST18 polymorphism, overexpression of ST18 enhanced keratinocyte susceptibility to autoantibody-induced loss of cell adhesion, which may be caused in part by enhanced ERK signaling.}, language = {en} }