@article{EwaldFuchsBoegeleinetal.2023, author = {Ewald, Andrea and Fuchs, Andreas and Boegelein, Lasse and Grunz, Jan-Peter and Kneist, Karl and Gbureck, Uwe and Hoelscher-Doht, Stefanie}, title = {Degradation and bone-contact biocompatibility of two drillable magnesium phosphate bone cements in an in vivo rabbit bone defect model}, series = {Materials}, volume = {16}, journal = {Materials}, number = {13}, issn = {1996-1944}, doi = {10.3390/ma16134650}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362824}, year = {2023}, abstract = {The use of bone-cement-enforced osteosynthesis is a growing topic in trauma surgery. In this context, drillability is a desirable feature for cements that can improve fracture stability, which most of the available cement systems lack. Therefore, in this study, we evaluated a resorbable and drillable magnesium-phosphate (MgP)-based cement paste considering degradation behavior and biocompatibility in vivo. Two different magnesium-phosphate-based cement (MPC) pastes with different amounts of phytic acid (IP 6) as setting retarder (MPC 22.5 and MPC 25) were implanted in an orthotopic defect model of the lateral femoral condyle of New Zealand white rabbits for 6 weeks. After explantation, their resorption behavior and material characteristics were evaluated by means of X-ray diffraction (XRD), porosimetry measurement, histological staining, peripheral quantitative computed tomography (pQCT), cone-beam computed tomography (CBCT) and biomechanical load-to-failure tests. Both cement pastes displayed comparable results in mechanical strength and resorption kinetics. Bone-contact biocompatibility was excellent without any signs of inflammation. Initial resorption and bone remodeling could be observed. MPC pastes with IP 6 as setting retardant have the potential to be a valuable alternative in distinct fracture patterns. Drillability, promising resorption potential and high mechanical strength confirm their suitability for use in clinical routine.}, language = {en} } @article{ElgheznawyOefteringEnglertetal.2023, author = {Elgheznawy, Amro and {\"O}ftering, Patricia and Englert, Maximilian and Mott, Kristina and Kaiser, Friederike and Kusch, Charly and Gbureck, Uwe and B{\"o}sl, Michael R. and Schulze, Harald and Nieswandt, Bernhard and V{\"o}gtle, Timo and Hermanns, Heike M.}, title = {Loss of zinc transporters ZIP1 and ZIP3 augments platelet reactivity in response to thrombin and accelerates thrombus formation in vivo}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1197894}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320154}, year = {2023}, abstract = {Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function.}, language = {en} } @article{CastilhoHochleitnerWilsonetal.2018, author = {Castilho, Miguel and Hochleitner, Gernot and Wilson, Wouter and van Rietbergen, Bert and Dalton, Paul D. and Groll, J{\"u}rgen and Malda, Jos and Ito, Keita}, title = {Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-19502-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222280}, year = {2018}, abstract = {Reinforcing hydrogels with micro-fibre scaffolds obtained by a Melt-Electrospinning Writing (MEW) process has demonstrated great promise for developing tissue engineered (TE) constructs with mechanical properties compatible to native tissues. However, the mechanical performance and reinforcement mechanism of the micro-fibre reinforced hydrogels is not yet fully understood. In this study, FE models, implementing material properties measured experimentally, were used to explore the reinforcement mechanism of fibre-hydrogel composites. First, a continuum FE model based on idealized scaffold geometry was used to capture reinforcement effects related to the suppression of lateral gel expansion by the scaffold, while a second micro-FE model based on micro-CT images of the real construct geometry during compaction captured the effects of load transfer through the scaffold interconnections. Results demonstrate that the reinforcement mechanism at higher scaffold volume fractions was dominated by the load carrying-ability of the fibre scaffold interconnections, which was much higher than expected based on testing scaffolds alone because the hydrogel provides resistance against buckling of the scaffold. We propose that the theoretical understanding presented in this work will assist the design of more effective composite constructs with potential applications in a wide range of TE conditions.}, language = {en} } @article{RennerOttoKuebleretal.2023, author = {Renner, Tobias and Otto, Paul and K{\"u}bler, Alexander C. and H{\"o}lscher-Doht, Stefanie and Gbureck, Uwe}, title = {Novel adhesive mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides}, series = {Journal of Materials Science: Materials in Medicine}, volume = {34}, journal = {Journal of Materials Science: Materials in Medicine}, doi = {10.1007/s10856-023-06714-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357342}, year = {2023}, abstract = {Present surgical situations require a bone adhesive which has not yet been developed for use in clinical applications. Recently, phosphoserine modified cements (PMC) based on mixtures of o-phosphoserine (OPLS) and calcium phosphates, such as tetracalcium phosphate (TTCP) or α-tricalcium phosphate (α-TCP) as well as chelate setting magnesium phosphate cements have gained increasing popularity for their use as mineral bone adhesives. Here, we investigated new mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides, which possess excellent adhesive properties. These were analyzed by X-ray diffraction, Fourier infrared spectroscopy and electron microscopy and subjected to mechanical tests to determine the bond strength to bone after ageing at physiological conditions. The novel biomineral adhesives demonstrate excellent bond strength to bone with approximately 6.6-7.3 MPa under shear load. The adhesives are also promising due to their cohesive failure pattern and ductile character. In this context, the new adhesive cements are superior to currently prevailing bone adhesives. Future efforts on bone adhesives made from phosphoserine and Mg2+ appear to be very worthwhile.}, language = {en} } @article{OuhaddiCharbonnierPorgeetal.2023, author = {Ouhaddi, Yassine and Charbonnier, Baptiste and Porge, Juliette and Zhang, Yu-Ling and Garcia, Isadora and Gbureck, Uwe and Grover, Liam and Gilardino, Mirko and Harvey, Edward and Makhoul, Nicholas and Barralet, Jake}, title = {Development of neovasculature in axially vascularized calcium phosphate cement scaffolds}, series = {Journal of Functional Biomaterials}, volume = {14}, journal = {Journal of Functional Biomaterials}, number = {2}, issn = {2079-4983}, doi = {10.3390/jfb14020105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304026}, year = {2023}, abstract = {Augmenting the vascular supply to generate new tissues, a crucial aspect in regenerative medicine, has been challenging. Recently, our group showed that calcium phosphate can induce the formation of a functional neo-angiosome without the need for microsurgical arterial anastomosis. This was a preclinical proof of concept for biomaterial-induced luminal sprouting of large-diameter vessels. In this study, we investigated if sprouting was a general response to surgical injury or placement of an inorganic construct around the vessel. Cylindrical biocement scaffolds of differing chemistries were placed around the femoral vein. A contrast agent was used to visualize vessel ingrowth into the scaffolds. Cell populations in the scaffold were mapped using immunohistochemistry. Calcium phosphate scaffolds induced 2.7-3 times greater volume of blood vessels than calcium sulphate or magnesium phosphate scaffolds. Macrophage and vSMC populations were identified that changed spatially and temporally within the scaffold during implantation. NLRP3 inflammasome activation peaked at weeks 2 and 4 and then declined; however, IL-1β expression was sustained over the course of the experiment. IL-8, a promoter of angiogenesis, was also detected, and together, these responses suggest a role of sterile inflammation. Unexpectedly, the effect was distinct from an injury response as a result of surgical placement and also was not simply a foreign body reaction as a result of placing a rigid bioceramic next to a vein, since, while the materials tested had similar microstructures, only the calcium phosphates tested elicited an angiogenic response. This finding then reveals a potential path towards a new strategy for creating better pro-regenerative biomaterials.}, language = {en} } @article{JanzenBakirciFaberetal.2022, author = {Janzen, Dieter and Bakirci, Ezgi and Faber, Jessica and Andrade Mier, Mateo and Hauptstein, Julia and Pal, Arindam and Forster, Leonard and Hazur, Jonas and Boccaccini, Aldo R. and Detsch, Rainer and Teßmar, J{\"o}rg and Budday, Silvia and Blunk, Torsten and Dalton, Paul D. and Villmann, Carmen}, title = {Reinforced Hyaluronic Acid-Based Matrices Promote 3D Neuronal Network Formation}, series = {Advanced Healthcare Materials}, volume = {11}, journal = {Advanced Healthcare Materials}, number = {21}, doi = {10.1002/adhm.202201826}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318682}, year = {2022}, abstract = {3D neuronal cultures attempt to better replicate the in vivo environment to study neurological/neurodegenerative diseases compared to 2D models. A challenge to establish 3D neuron culture models is the low elastic modulus (30-500 Pa) of the native brain. Here, an ultra-soft matrix based on thiolated hyaluronic acid (HA-SH) reinforced with a microfiber frame is formulated and used. Hyaluronic acid represents an essential component of the brain extracellular matrix (ECM). Box-shaped frames with a microfiber spacing of 200 µm composed of 10-layers of poly(ɛ-caprolactone) (PCL) microfibers (9.7 ± 0.2 µm) made via melt electrowriting (MEW) are used to reinforce the HA-SH matrix which has an elastic modulus of 95 Pa. The neuronal viability is low in pure HA-SH matrix, however, when astrocytes are pre-seeded below this reinforced construct, they significantly support neuronal survival, network formation quantified by neurite length, and neuronal firing shown by Ca\(^{2+}\) imaging. The astrocyte-seeded HA-SH matrix is able to match the neuronal viability to the level of Matrigel, a gold standard matrix for neuronal culture for over two decades. Thus, this 3D MEW frame reinforced HA-SH composite with neurons and astrocytes constitutes a reliable and reproducible system to further study brain diseases.}, language = {en} } @article{LambergerZainuddinScheibeletal.2023, author = {Lamberger, Zan and Zainuddin, Shakir and Scheibel, Thomas and Lang, Gregor}, title = {Polymeric Janus Fibers}, series = {ChemPlusChem}, volume = {88}, journal = {ChemPlusChem}, number = {2}, doi = {10.1002/cplu.202200371}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318516}, year = {2023}, abstract = {Janus fibers are a class of composite materials comprising mechanical and chemical to biological functionality. Combining different materials and functionalities in one micro- or even nanoscale fiber enables otherwise unreachable synergistic physicochemical effects with unprecedented opportunities for technical or biomedical applications. Here, recent developments of processing technologies and applications of polymeric Janus fibers will be reviewed. Various examples in the fields of textiles, catalysis, sensors as well as medical applications, like drug delivery systems, tissue engineering and antimicrobial materials, are presented to illuminate the outstanding potential of such high-end functional materials for novel applications in the upcoming future.}, language = {en} } @article{KadeBakirciTandonetal.2022, author = {Kade, Juliane C. and Bakirci, Ezgi and Tandon, Biranche and Gorgol, Danila and Mrlik, Miroslav and Luxenhofer, Robert and Dalton, Paul D.}, title = {The Impact of Including Carbonyl Iron Particles on the Melt Electrowriting Process}, series = {Macromolecular Materials and Engineering}, volume = {307}, journal = {Macromolecular Materials and Engineering}, number = {12}, issn = {1438-7492}, doi = {10.1002/mame.202200478}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318482}, year = {2022}, abstract = {Melt electrowriting, a high-resolution additive manufacturing technique, is used in this study to process a magnetic polymer-based blend for the first time. Carbonyl iron (CI) particles homogenously distribute into poly(vinylidene fluoride) (PVDF) melts to result in well-defined, highly porous structures or scaffolds comprised of fibers ranging from 30 to 50 µm in diameter. This study observes that CI particle incorporation is possible up to 30 wt\% without nozzle clogging, albeit that the highest concentration results in heterogeneous fiber morphologies. In contrast, the direct writing of homogeneous PVDF fibers with up to 15 wt\% CI is possible. The fibers can be readily displaced using magnets at concentrations of 1 wt\% and above. Combined with good viability of L929 CC1 cells using Live/Dead imaging on scaffolds for all CI concentrations indicates that these formulations have potential for the usage in stimuli-responsive applications such as 4D printing.}, language = {en} } @article{RymaGencNadernezhadetal.2022, author = {Ryma, Matthias and Gen{\c{c}}, Hatice and Nadernezhad, Ali and Paulus, Ilona and Schneidereit, Dominik and Friedrich, Oliver and Andelovic, Kristina and Lyer, Stefan and Alexiou, Christoph and Cicha, Iwona and Groll, J{\"u}rgen}, title = {A Print-and-Fuse Strategy for Sacrificial Filaments Enables Biomimetically Structured Perfusable Microvascular Networks with Functional Endothelium Inside 3D Hydrogels}, series = {Advanced Materials}, volume = {34}, journal = {Advanced Materials}, number = {28}, doi = {10.1002/adma.202200653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318532}, year = {2022}, abstract = {A facile and flexible approach for the integration of biomimetically branched microvasculature within bulk hydrogels is presented. For this, sacrificial scaffolds of thermoresponsive poly(2-cyclopropyl-2-oxazoline) (PcycloPrOx) are created using melt electrowriting (MEW) in an optimized and predictable way and subsequently placed into a customized bioreactor system, which is then filled with a hydrogel precursor solution. The aqueous environment above the lower critical solution temperature (LCST) of PcycloPrOx at 25 °C swells the polymer without dissolving it, resulting in fusion of filaments that are deposited onto each other (print-and-fuse approach). Accordingly, an adequate printing pathway design results in generating physiological-like branchings and channel volumes that approximate Murray's law in the geometrical ratio between parent and daughter vessels. After gel formation, a temperature decrease below the LCST produces interconnected microchannels with distinct inlet and outlet regions. Initial placement of the sacrificial scaffolds in the bioreactors in a pre-defined manner directly yields perfusable structures via leakage-free fluid connections in a reproducible one-step procedure. Using this approach, rapid formation of a tight and biologically functional endothelial layer, as assessed not only through fluorescent dye diffusion, but also by tumor necrosis factor alpha (TNF-α) stimulation, is obtained within three days.}, language = {en} } @article{WeiglBlumSanchoetal.2022, author = {Weigl, Franziska and Blum, Carina and Sancho, Ana and Groll, J{\"u}rgen}, title = {Correlative Analysis of Intra- Versus Extracellular Cell Detachment Events via the Alignment of Optical Imaging and Detachment Force Quantification}, series = {Advanced Materials Technologies}, volume = {7}, journal = {Advanced Materials Technologies}, number = {11}, issn = {2365-709X}, doi = {10.1002/admt.202200195}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318544}, year = {2022}, abstract = {In recent decades, hybrid characterization systems have become pillars in the study of cellular biomechanics. Especially, Atomic Force Microscopy (AFM) is combined with a variety of optical microscopy techniques to discover new aspects of cell adhesion. AFM, however, is limited to the early-stage of cell adhesion, so that the forces of mature cell contacts cannot be addressed. Even though the invention of Fluidic Force Microscopy (FluidFM) overcomes these limitations by combining the precise force-control of AFM with microfluidics, the correlative investigation of detachment forces arising from spread mammalian cells has been barely achieved. Here, a novel multifunctional device integrating Fluorescence Microscopy (FL) into FluidFM technology (FL-FluidFM) is introduced, enabling real-time optical tracking of entire cell detachment processes in parallel to the undisturbed acquisition of force-distance curves. This setup, thus, allows for entailing two pieces of information at once. As proof-of-principle experiment, this method is applied to fluorescently labeled rat embryonic fibroblast (REF52) cells, demonstrating a precise matching between identified force-jumps and visualized cellular unbinding steps. This study, thus, presents a novel characterization tool for the correlated evaluation of mature cell adhesion, which has great relevance, for instance, in the development of biomaterials or the fight against diseases such as cancer.}, language = {en} }