@article{LauruschkatMuchsinReinetal.2023, author = {Lauruschkat, Chris David and Muchsin, Ihsan and Rein, Alice and Erhard, Florian and Grathwohl, Denise and D{\"o}lken, Lars and K{\"o}chel, Carolin and Falk, Christine Susanne and Einsele, Hermann and Wurster, Sebastian and Grigoleit, G{\"o}tz Ulrich and Kraus, Sabrina}, title = {CD4+ T cells are the major predictor of HCMV control in allogeneic stem cell transplant recipients on letermovir prophylaxis}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1148841}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-316982}, year = {2023}, abstract = {Introduction Human cytomegalovirus (HCMV) causes significant morbidity and mortality in allogeneic stem cell transplant (alloSCT) recipients. Recently, antiviral letermovir prophylaxis during the first 100 days after alloSCT replaced PCR-guided preemptive therapy as the primary standard of care for HCMV reactivations. Here, we compared NK-cell and T-cell reconstitution in alloSCT recipients receiving preemptive therapy or letermovir prophylaxis in order to identify potential biomarkers predicting prolonged and symptomatic HCMV reactivation. Methods To that end, the NK-cell and T-cell repertoire of alloSCT recipients managed with preemptive therapy (n=32) or letermovir prophylaxis (n=24) was characterized by flow cytometry on days +30, +60, +90 and +120 after alloSCT. Additionally, background-corrected HCMV-specific T-helper (CD4+IFNγ+) and cytotoxic (CD8+IFNγ+CD107a+) T cells were quantified after pp65 stimulation. Results Compared to preemptive therapy, letermovir prophylaxis prevented HCMV reactivation and decreased HCMV peak viral loads until days +120 and +365. Letermovir prophylaxis resulted in decreased T-cell numbers but increased NK-cell numbers. Interestingly, despite the inhibition of HCMV, we found high numbers of "memory-like" (CD56dimFcεRIγ- and/or CD159c+) NK cells and an expansion of HCMV-specific CD4+ and CD8+ T cells in letermovir recipients. We further compared immunological readouts in patients on letermovir prophylaxis with non/short-term HCMV reactivation (NSTR) and prolonged/symptomatic HCMV reactivation (long-term HCMV reactivation, LTR). Median HCMV-specific CD4+ T-cell frequencies were significantly higher in NSTR patients (day +60, 0.35 \% vs. 0.00 \% CD4+IFNγ+/CD4+ cells, p=0.018) than in patients with LTR, whereas patients with LTR had significantly higher median regulatory T-cell (Treg) frequencies (day +90, 2.2 \% vs. 6.2 \% CD4+CD25+CD127dim/CD4+ cells, p=0.019). ROC analysis confirmed low HCMV specific CD4+ (AUC on day +60: 0.813, p=0.019) and high Treg frequencies (AUC on day +90: 0.847, p=0.021) as significant predictors of prolonged and symptomatic HCMV reactivation. Discussion Taken together, letermovir prophylaxis delays HCMV reactivation and alters NK- and T-cell reconstitution. High numbers of HCMV-specific CD4+ T cells and low numbers of Tregs seem to be pivotal to suppress post-alloSCT HCMV reactivation during letermovir prophylaxis. Administration of more advanced immunoassays that include Treg signature cytokines might contribute to the identification of patients at high-risk for long-term and symptomatic HCMV reactivation who might benefit from prolonged administration of letermovir.}, language = {en} } @article{AintablianStrozniakHeueretal.2023, author = {Aintablian, Arpa and Strozniak, Sandra and Heuer, Marion and Lutz, Manfred B.}, title = {M-MDSC in vitro generation from mouse bone marrow with IL-3 reveals high expression and functional activity of arginase 1}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1130600}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317769}, year = {2023}, abstract = {Myeloid-derived suppressor cells (MDSC) represent major regulators of immune responses, which can control T cells via their inducible nitric oxide synthase (iNOS)- and arginase 1 (Arg1)-mediated effector functions. While GM-CSF is well documented to promote MDSC development, little is known about this potential of IL-3, an established growth factor for mast cells. Here, we show that IL-3, similar to GM-CSF, generates monocytic MDSC (M-MDSC) from murine bone marrow (BM) cells after 3 days of in vitro culture. At this time point, predominantly CD11b+ CD49a+ monocytic and CD11b+ CD49a- FcεR I- neutrophilic cells were detectable, while CD11blow/neg FcεR I+ mast cells accumulated only after extended culture periods. Both growth factors were equivalent in generating M-MDSC with respect to phenotype, cell yield and typical surface markers. However, IL-3 generated M-MDSC produced less TNF, IL-1β and IL-10 after activation with LPS + IFN-γ but showed higher Arg1 expression compared to GM-CSF generated M-MDSC. Arg1 was further induced together with iNOS after MDSC activation. Accordingly, an increased Arg1-dependent suppressor activity by the IL-3 generated M-MDSC was observed using respective iNOS and Arg1 inhibitors. Together, these data indicate that M-MDSC can be generated in vitro by IL-3, similar to GM-CSF, but with increased Arg1 expression and Arg1-mediated suppression capacity. This protocol now allows further in vitro studies on the role of IL-3 for MDSC biology.}, language = {en} } @article{DiesendorfRollGeigeretal.2023, author = {Diesendorf, Viktoria and Roll, Valeria and Geiger, Nina and F{\"a}hr, Sofie and Obernolte, Helena and Sewald, Katherina and Bodem, Jochen}, title = {Drug-induced phospholipidosis is not correlated with the inhibition of SARS-CoV-2 - inhibition of SARS-CoV-2 is cell line-specific}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {13}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2023.1100028}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-326202}, year = {2023}, abstract = {Recently, Tummino et al. reported that 34 compounds, including Chloroquine and Fluoxetine, inhibit SARS-CoV-2 replication by inducing phospholipidosis, although Chloroquine failed to suppress viral replication in Calu-3 cells and patients. In contrast, Fluoxetine represses viral replication in human precision-cut lung slices (PCLS) and Calu-3 cells. Thus, it is unlikely that these compounds have similar mechanisms of action. Here, we analysed a subset of these compounds in the viral replication and phospholipidosis assays using the Calu-3 cells and PCLS as the patient-near system. Trimipramine and Chloroquine induced phospholipidosis but failed to inhibit SARS-CoV-2 replication in Calu-3 cells, which contradicts the reported findings and the proposed mechanism. Fluoxetine, only slightly induced phospholipidosis in Calu-3 cells but reduced viral replication by 2.7 orders of magnitude. Tilorone suppressed viral replication by 1.9 orders of magnitude in Calu-3 cells without causing phospholipidosis. Thus, induction of phospholipidosis is not correlated with the inhibition of SARS-CoV-2, and the compounds act via other mechanisms. However, we show that compounds, such as Amiodarone, Tamoxifen and Tilorone, with antiviral activity on Calu-3 cells, also inhibited viral replication in human PCLS. Our results indicate that antiviral assays against SARS-CoV-2 are cell-line specific. Data from Vero E6 can lead to non-transferable results, underlining the importance of an appropriate cell system for analysing antiviral compounds against SARS-CoV-2. We observed a correlation between the active compounds in Calu-3 cells and PCLS.}, language = {en} } @article{KarunakaranSubramanianJinetal.2023, author = {Karunakaran, Mohindar M. and Subramanian, Hariharan and Jin, Yiming and Mohammed, Fiyaz and Kimmel, Brigitte and Juraske, Claudia and Starick, Lisa and N{\"o}hren, Anna and L{\"a}nder, Nora and Willcox, Carrie R. and Singh, Rohit and Schamel, Wolfgang W. and Nikolaev, Viacheslav O. and Kunzmann, Volker and Wiemer, Andrew J. and Willcox, Benjamin E. and Herrmann, Thomas}, title = {A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-41938-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358179}, year = {2023}, abstract = {Butyrophilin (BTN)-3A and BTN2A1 molecules control the activation of human Vγ9Vδ2 T cells during T cell receptor (TCR)-mediated sensing of phosphoantigens (PAg) derived from microbes and tumors. However, the molecular rules governing PAg sensing remain largely unknown. Here, we establish three mechanistic principles of PAg-mediated γδ T cell activation. First, in humans, following PAg binding to the intracellular BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the extracellular V-domain of BTN3A2/BTN3A3. Moreover, the localization of both protein domains on different chains of the BTN3A homo-or heteromers is essential for efficient PAg-mediated activation. Second, the formation of BTN3A homo-or heteromers, which differ in intracellular trafficking and conformation, is controlled by molecular interactions between the juxtamembrane regions of the BTN3A chains. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and the division of labor in BTN proteins improves our understanding of PAg sensing and elucidates a mode of action that may apply to other BTN family members.}, language = {en} } @article{DjakovicHennigReinischetal.2023, author = {Djakovic, Lara and Hennig, Thomas and Reinisch, Katharina and Milić, Andrea and Whisnant, Adam W. and Wolf, Katharina and Weiß, Elena and Haas, Tobias and Grothey, Arnhild and J{\"u}rges, Christopher S. and Kluge, Michael and Wolf, Elmar and Erhard, Florian and Friedel, Caroline C. and D{\"o}lken, Lars}, title = {The HSV-1 ICP22 protein selectively impairs histone repositioning upon Pol II transcription downstream of genes}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-40217-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358161}, year = {2023}, abstract = {Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in ΔICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection.}, language = {en} } @article{HaakeHaackSchaeferetal.2023, author = {Haake, Markus and Haack, Beatrice and Sch{\"a}fer, Tina and Harter, Patrick N. and Mattavelli, Greta and Eiring, Patrick and Vashist, Neha and Wedekink, Florian and Genssler, Sabrina and Fischer, Birgitt and Dahlhoff, Julia and Mokhtari, Fatemeh and Kuzkina, Anastasia and Welters, Marij J. P. and Benz, Tamara M. and Sorger, Lena and Thiemann, Vincent and Almanzar, Giovanni and Selle, Martina and Thein, Klara and Sp{\"a}th, Jacob and Gonzalez, Maria Cecilia and Reitinger, Carmen and Ipsen-Escobedo, Andrea and Wistuba-Hamprecht, Kilian and Eichler, Kristin and Filipski, Katharina and Zeiner, Pia S. and Beschorner, Rudi and Goedemans, Renske and Gogolla, Falk Hagen and Hackl, Hubert and Rooswinkel, Rogier W. and Thiem, Alexander and Romer Roche, Paula and Joshi, Hemant and P{\"u}hringer, Dirk and W{\"o}ckel, Achim and Diessner, Joachim E. and R{\"u}diger, Manfred and Leo, Eugen and Cheng, Phil F. and Levesque, Mitchell P. and Goebeler, Matthias and Sauer, Markus and Nimmerjahn, Falk and Schuberth-Wagner, Christine and Felten, Stefanie von and Mittelbronn, Michel and Mehling, Matthias and Beilhack, Andreas and van der Burg, Sjoerd H. and Riedel, Angela and Weide, Benjamin and Dummer, Reinhard and Wischhusen, J{\"o}rg}, title = {Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-39817-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357333}, year = {2023}, abstract = {Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.}, language = {en} } @article{WeissGruendahlDeckertetal.2023, author = {Weiß, Martin and Gr{\"u}ndahl, Marthe and Deckert, J{\"u}rgen and Eichner, Felizitas A. and Kohls, Mirjam and St{\"o}rk, Stefan and Heuschmann, Peter U. and Hein, Grit}, title = {Differential network interactions between psychosocial factors, mental health, and health-related quality of life in women and men}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, organization = {STAAB-COVID Study Group}, doi = {10.1038/s41598-023-38525-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357858}, year = {2023}, abstract = {Psychosocial factors affect mental health and health-related quality of life (HRQL) in a complex manner, yet gender differences in these interactions remain poorly understood. We investigated whether psychosocial factors such as social support and personal and work-related concerns impact mental health and HRQL differentially in women and men during the first year of the COVID-19 pandemic. Between June and October 2020, the first part of a COVID-19-specific program was conducted within the "Characteristics and Course of Heart Failure Stages A-B and Determinants of Progression (STAAB)" cohort study, a representative age- and gender-stratified sample of the general population of W{\"u}rzburg, Germany. Using psychometric networks, we first established the complex relations between personal social support, personal and work-related concerns, and their interactions with anxiety, depression, and HRQL. Second, we tested for gender differences by comparing expected influence, edge weight differences, and stability of the networks. The network comparison revealed a significant difference in the overall network structure. The male (N = 1370) but not the female network (N = 1520) showed a positive link between work-related concern and anxiety. In both networks, anxiety was the most central variable. These findings provide further evidence that the complex interplay of psychosocial factors with mental health and HRQL decisively depends on gender. Our results are relevant for the development of gender-specific interventions to increase resilience in times of pandemic crisis.}, language = {en} } @article{GschmackMonoranuMaroufetal.2022, author = {Gschmack, Eva and Monoranu, Camelia-Maria and Marouf, Hecham and Meyer, Sarah and Lessel, Lena and Idris, Raja and Berg, Daniela and Maetzler, Walter and Steigerwald, Frank and Volkmann, Jens and Gerlach, Manfred and Riederer, Peter and Koutsilieri, Eleni and Scheller, Carsten}, title = {Plasma autoantibodies to glial fibrillary acidic protein (GFAP) react with brain areas according to Braak staging of Parkinson's disease}, series = {Journal of Neural Transmission}, volume = {129}, journal = {Journal of Neural Transmission}, number = {5-6}, doi = {10.1007/s00702-022-02495-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325161}, pages = {545-555}, year = {2022}, abstract = {Idiopathic Parkinson's disease (PD) is characterized by a progredient degeneration of the brain, starting at deep subcortical areas such as the dorsal motor nucleus of the glossopharyngeal and vagal nerves (DM) (stage 1), followed by the coeruleus-subcoeruleus complex; (stage 2), the substantia nigra (SN) (stage 3), the anteromedial temporal mesocortex (MC) (stage 4), high-order sensory association areas and prefrontal fields (HC) (stage 5) and finally first-order sensory association areas, premotor areas, as well as primary sensory and motor field (FC) (stage 6). Autoimmunity might play a role in PD pathogenesis. Here we analyzed whether anti-brain autoantibodies differentially recognize different human brain areas and identified autoantigens that correlate with the above-described dissemination of PD pathology in the brain. Brain tissue was obtained from deceased individuals with no history of neurological or psychiatric disease and no neuropathological abnormalities. Tissue homogenates from different brain regions (DM, SN, MC, HC, FC) were subjected to SDS-PAGE and Western blot. Blots were incubated with plasma samples from 30 PD patients and 30 control subjects and stained with anti-IgG antibodies to detect anti-brain autoantibodies. Signals were quantified. Prominent autoantigens were identified by 2D-gel-coupled mass spectrometry sequencing. Anti-brain autoantibodies are frequent and occur both in healthy controls and individuals with PD. Glial fibrillary acidic protein (GFAP) was identified as a prominent autoantigen recognized in all plasma samples. GFAP immunoreactivity was highest in DM areas and lowest in FC areas with no significant differences in anti-GFAP autoantibody titers between healthy controls and individuals with PD. The anti-GFAP autoimmunoreactivity of different brain areas correlates with the dissemination of histopathological neurodegeneration in PD. We hypothesize that GFAP autoantibodies are physiological but might be involved as a cofactor in PD pathogenesis secondary to a leakage of the blood-brain barrier.}, language = {en} } @article{LodhaMuchsinJuergesetal.2023, author = {Lodha, Manivel and Muchsin, Ihsan and J{\"u}rges, Christopher and Juranic Lisnic, Vanda and L'Hernault, Anne and Rutkowski, Andrzej J. and Prusty, Bhupesh K. and Grothey, Arnhild and Milic, Andrea and Hennig, Thomas and Jonjic, Stipan and Friedel, Caroline C. and Erhard, Florian and D{\"o}lken, Lars}, title = {Decoding murine cytomegalovirus}, series = {PLOS Pathogens}, volume = {19}, journal = {PLOS Pathogens}, number = {5}, issn = {1553-7374}, doi = {10.1371/journal.ppat.1010992}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350480}, year = {2023}, abstract = {The genomes of both human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) were first sequenced over 20 years ago. Similar to HCMV, the MCMV genome had initially been proposed to harbor ≈170 open reading frames (ORFs). More recently, omics approaches revealed HCMV gene expression to be substantially more complex comprising several hundred viral ORFs. Here, we provide a state-of-the art reannotation of lytic MCMV gene expression based on integrative analysis of a large set of omics data. Our data reveal 365 viral transcription start sites (TiSS) that give rise to 380 and 454 viral transcripts and ORFs, respectively. The latter include 200 small ORFs, some of which represented the most highly expressed viral gene products. By combining TiSS profiling with metabolic RNA labelling and chemical nucleotide conversion sequencing (dSLAM-seq), we provide a detailed picture of the expression kinetics of viral transcription. This not only resulted in the identification of a novel MCMV immediate early transcript encoding the m166.5 ORF, which we termed ie4, but also revealed a group of well-expressed viral transcripts that are induced later than canonical true late genes and contain an initiator element (Inr) but no TATA- or TATT-box in their core promoters. We show that viral upstream ORFs (uORFs) tune gene expression of longer viral ORFs expressed in cis at translational level. Finally, we identify a truncated isoform of the viral NK-cell immune evasin m145 arising from a viral TiSS downstream of the canonical m145 mRNA. Despite being ≈5-fold more abundantly expressed than the canonical m145 protein it was not required for downregulating the NK cell ligand, MULT-I. In summary, our work will pave the way for future mechanistic studies on previously unknown cytomegalovirus gene products in an important virus animal model.}, language = {en} } @article{RiedererterMeulen2020, author = {Riederer, Peter and ter Meulen, Volker}, title = {Coronaviruses: a challenge of today and a call for extended human postmortem brain analyses}, series = {Journal of Neural Transmission}, volume = {127}, journal = {Journal of Neural Transmission}, number = {9}, issn = {0300-9564}, doi = {10.1007/s00702-020-02230-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-314637}, pages = {1217-1228}, year = {2020}, abstract = {While there is abounding literature on virus-induced pathology in general and coronavirus in particular, recent evidence accumulates showing distinct and deleterious brain affection. As the respiratory tract connects to the brain without protection of the blood-brain barrier, SARS-CoV-2 might in the early invasive phase attack the cardiorespiratory centres located in the medulla/pons areas, giving rise to disturbances of respiration and cardiac problems. Furthermore, brainstem regions are at risk to lose their functional integrity. Therefore, long-term neurological as well as psychiatric symptomatology and eventual respective disorders cannot be excluded as evidenced from influenza-A triggered post-encephalitic Parkinsonism and HIV-1 triggered AIDS-dementia complex. From the available evidences for coronavirus-induced brain pathology, this review concludes a number of unmet needs for further research strategies like human postmortem brain analyses. SARS-CoV-2 mirroring experimental animal brain studies, characterization of time-dependent and region-dependent spreading behaviours of coronaviruses, enlightening of pathological mechanisms after coronavirus infection using long-term animal models and clinical observations of patients having had COVID-19 infection are calling to develop both protective strategies and drug discoveries to avoid early and late coronavirus-induced functional brain disturbances, symptoms and eventually disorders. To fight SARS-CoV-2, it is an urgent need to enforce clinical, molecular biological, neurochemical and genetic research including brain-related studies on a worldwide harmonized basis.}, language = {en} }