@article{KleinCoccoUereyenetal.2022, author = {Klein, Igor and Cocco, Arturo and Uereyen, Soner and Mannu, Roberto and Floris, Ignazio and Oppelt, Natascha and Kuenzer, Claudia}, title = {Outbreak of Moroccan locust in Sardinia (Italy): a remote sensing perspective}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {23}, issn = {2072-4292}, doi = {10.3390/rs14236050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297232}, year = {2022}, abstract = {The Moroccan locust has been considered one of the most dangerous agricultural pests in the Mediterranean region. The economic importance of its outbreaks diminished during the second half of the 20th century due to a high degree of agricultural industrialization and other human-caused transformations of its habitat. Nevertheless, in Sardinia (Italy) from 2019 on, a growing invasion of this locust species is ongoing, being the worst in over three decades. Locust swarms destroyed crops and pasture lands of approximately 60,000 ha in 2022. Drought, in combination with increasing uncultivated land, contributed to forming the perfect conditions for a Moroccan locust population upsurge. The specific aim of this paper is the quantification of land cover land use (LCLU) influence with regard to the recent locust outbreak in Sardinia using remote sensing data. In particular, the role of untilled, fallow, or abandoned land in the locust population upsurge is the focus of this case study. To address this objective, LCLU was derived from Sentinel-2A/B Multispectral Instrument (MSI) data between 2017 and 2021 using time-series composites and a random forest (RF) classification model. Coordinates of infested locations, altitude, and locust development stages were collected during field observation campaigns between March and July 2022 and used in this study to assess actual and previous land cover situation of these locations. Findings show that 43\% of detected locust locations were found on untilled, fallow, or uncultivated land and another 23\% within a radius of 100 m to such areas. Furthermore, oviposition and breeding sites are mostly found in sparse vegetation (97\%). This study demonstrates that up-to-date remote sensing data and target-oriented analyses can provide valuable information to contribute to early warning systems and decision support and thus to minimize the risk concerning this agricultural pest. This is of particular interest for all agricultural pests that are strictly related to changing human activities within transformed habitats.}, language = {en} } @article{ChilakaObidiegwuChilakaetal.2022, author = {Chilaka, Cynthia Adaku and Obidiegwu, Jude Ejikeme and Chilaka, Augusta Chinenye and Atanda, Olusegun Oladimeji and Mally, Angela}, title = {Mycotoxin regulatory status in Africa: a decade of weak institutional efforts}, series = {Toxins}, volume = {14}, journal = {Toxins}, number = {7}, issn = {2072-6651}, doi = {10.3390/toxins14070442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278941}, year = {2022}, abstract = {Food safety problems are a major hindrance to achieving food security, trade, and healthy living in Africa. Fungi and their secondary metabolites, known as mycotoxins, represent an important concern in this regard. Attempts such as agricultural, storage, and processing practices, and creation of awareness to tackle the menace of fungi and mycotoxins have yielded measurable outcomes especially in developed countries, where there are comprehensive mycotoxin legislations and enforcement schemes. Conversely, most African countries do not have mycotoxin regulatory limits and even when available, are only applied for international trade. Factors such as food insecurity, public ignorance, climate change, poor infrastructure, poor research funding, incorrect prioritization of resources, and nonchalant attitudes that exist among governmental organisations and other stakeholders further complicate the situation. In the present review, we discuss the status of mycotoxin regulation in Africa, with emphasis on the impact of weak mycotoxin legislations and enforcement on African trade, agriculture, and health. Furthermore, we discuss the factors limiting the establishment and control of mycotoxins in the region.}, language = {en} } @article{NyamekyeThielSchoenbrodtStittetal.2018, author = {Nyamekye, Clement and Thiel, Michael and Sch{\"o}nbrodt-Stitt, Sarah and Zoungrana, Benewinde J.-B. and Amekudzi, Leonard K.}, title = {Soil and water conservation in Burkina Faso, West Africa}, series = {Sustainability}, volume = {10}, journal = {Sustainability}, number = {9}, issn = {2071-1050}, doi = {10.3390/su10093182}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197653}, pages = {3182}, year = {2018}, abstract = {Inadequate land management and agricultural activities have largely resulted in land degradation in Burkina Faso. The nationwide governmental and institutional driven implementation and adoption of soil and water conservation measures (SWCM) since the early 1960s, however, is expected to successively slow down the degradation process and to increase the agricultural output. Even though relevant measures have been taken, only a few studies have been conducted to quantify their effect, for instance, on soil erosion and environmental restoration. In addition, a comprehensive summary of initiatives, implementation strategies, and eventually region-specific requirements for adopting different SWCM is missing. The present study therefore aims to review the different SWCM in Burkina Faso and implementation programs, as well as to provide information on their effects on environmental restoration and agricultural productivity. This was achieved by considering over 143 studies focusing on Burkina Faso's experience and research progress in areas of SWCM and soil erosion. SWCM in Burkina Faso have largely resulted in an increase in agricultural productivity and improvement in food security. Finally, this study aims at supporting the country's informed decision-making for extending already existing SWCM and for deriving further implementation strategies.}, language = {en} } @article{FaOliveroRealetal.2015, author = {Fa, John E. and Olivero, Jes{\´u}s and Real, Raimundo and Farf{\´a}n, Miguel A. and M{\´a}rquez, Ana L. and Vargas, J. Mario and Ziegler, Stefan and Wegmann, Martin and Brown, David and Margetts, Barrie and Nasi, Robert}, title = {Disentangling the relative effects of bushmeat availability on human nutrition in central Africa}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {8168}, doi = {10.1038/srep08168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144110}, year = {2015}, abstract = {We studied links between human malnutrition and wild meat availability within the Rainforest Biotic Zone in central Africa. We distinguished two distinct hunted mammalian diversity distributions, one in the rainforest areas (Deep Rainforest Diversity, DRD) containing taxa of lower hunting sustainability, the other in the northern rainforest-savanna mosaic, with species of greater hunting potential (Marginal Rainforest Diversity, MRD). Wild meat availability, assessed by standing crop mammalian biomass, was greater in MRD than in DRD areas. Predicted bushmeat extraction was also higher in MRD areas. Despite this, stunting of children, a measure of human malnutrition, was greater in MRD areas. Structural equation modeling identified that, in MRD areas, mammal diversity fell away from urban areas, but proximity to these positively influenced higher stunting incidence. In DRD areas, remoteness and distance from dense human settlements and infrastructures explained lower stunting levels. Moreover, stunting was higher away from protected areas. Our results suggest that in MRD areas, forest wildlife rational use for better human nutrition is possible. By contrast, the relatively low human populations in DRD areas currently offer abundant opportunities for the continued protection of more vulnerable mammals and allow dietary needs of local populations to be met.}, language = {en} }