@article{ClassenEardleyHempetal.2020, author = {Classen, Alice and Eardley, Connal D. and Hemp, Andreas and Peters, Marcell K. and Peters, Ralph S. and Ssymank, Axel and Steffan-Dewenter, Ingolf}, title = {Specialization of plant-pollinator interactions increases with temperature at Mt. Kilimanjaro}, series = {Ecology and Evolution}, volume = {10}, journal = {Ecology and Evolution}, number = {4}, doi = {10.1002/ece3.6056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235959}, pages = {2182-2195}, year = {2020}, abstract = {Aim: Species differ in their degree of specialization when interacting with other species, with significant consequences for the function and robustness of ecosystems. In order to better estimate such consequences, we need to improve our understanding of the spatial patterns and drivers of specialization in interaction networks. Methods: Here, we used the extensive environmental gradient of Mt. Kilimanjaro (Tanzania, East Africa) to study patterns and drivers of specialization, and robustness of plant-pollinator interactions against simulated species extinction with standardized sampling methods. We studied specialization, network robustness and other network indices of 67 quantitative plant-pollinator networks consisting of 268 observational hours and 4,380 plant-pollinator interactions along a 3.4 km elevational gradient. Using path analysis, we tested whether resource availability, pollinator richness, visitation rates, temperature, and/or area explain average specialization in pollinator communities. We further linked pollinator specialization to different pollinator taxa, and species traits, that is, proboscis length, body size, and species elevational ranges. Results: We found that specialization decreased with increasing elevation at different levels of biological organization. Among all variables, mean annual temperature was the best predictor of average specialization in pollinator communities. Specialization differed between pollinator taxa, but was not related to pollinator traits. Network robustness against simulated species extinctions of both plants and pollinators was lowest in the most specialized interaction networks, that is, in the lowlands. Conclusions: Our study uncovers patterns in plant-pollinator specialization along elevational gradients. Mean annual temperature was closely linked to pollinator specialization. Energetic constraints, caused by short activity timeframes in cold highlands, may force ectothermic species to broaden their dietary spectrum. Alternatively or in addition, accelerated evolutionary rates might facilitate the establishment of specialization under warm climates. Despite the mechanisms behind the patterns have yet to be fully resolved, our data suggest that temperature shifts in the course of climate change may destabilize pollination networks by affecting network architecture.}, language = {en} } @article{ChenGerber2014, author = {Chen, Yi-chun and Gerber, Bertram}, title = {Generalization and discrimination tasks yield concordant measures of perceived distance between odours and their binary mixtures in larval Drosophila}, series = {The Journal of Experimental Biology}, volume = {217}, journal = {The Journal of Experimental Biology}, number = {12}, doi = {10.1242/jeb.100966}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121625}, pages = {2071-7}, year = {2014}, abstract = {Similarity between odours is notoriously difficult to measure. Widely used behavioural approaches in insect olfaction research are cross-adaptation, masking, as well as associative tasks based on olfactory learning and the subsequent testing for how specific the established memory is. A concern with such memory-based approaches is that the learning process required to establish an odour memory may alter the way the odour is processed, such that measures of perception taken at the test are distorted. The present study was therefore designed to see whether behavioural judgements of perceptual distance are different for two different memory-based tasks, namely generalization and discrimination. We used odour-reward learning in larval Drosophila as a study case. In order to challenge the larvae's olfactory system, we chose to work with binary mixtures and their elements (1-octanol, n-amyl acetate, 3-octanol, benzaldehyde and hexyl acetate). We determined the perceptual distance between each mixture and its elements, first in a generalization task, and then in a discrimination task. It turns out that scores of perceptual distance are correlated between both tasks. A re-analysis of published studies looking at element-to-element perceptual distances in larval reward learning and in adult punishment learning confirms this result. We therefore suggest that across a given set of olfactory stimuli, associative training does not grossly alter the pattern of perceptual distances.}, language = {en} }