@phdthesis{Helbig2023, author = {Helbig, Tobias Thimo}, title = {Theory of eigenstate thermalization}, doi = {10.25972/OPUS-32996}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-329968}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Next to the emergence of nearly isolated quantum systems such as ultracold atoms with unprecedented experimental tunability, the conceptualization of the eigenstate thermalization hypothesis (ETH) by Deutsch and Srednicki in the late 20th century has sparked exceptional interest in the mechanism of quantum thermalization. The ETH conjectures that the expectation value of a local observable within the quantum state of an isolated, interacting quantum system converges to the thermal equilibrium value at large times caused by a loss of phase coherence, referred to as dephasing. The thermal behavior within the quantum expectation value is traced back to the level of individual eigenstates, who locally act as a thermal bath to subsystems of the full quantum system and are hence locally indistinguishable to thermal states. The ETH has important implications for the understanding of the foundations of statistical mechanics, the quantum-to-classical transition, and the nature of quantum entanglement. Irrespective of its theoretical success, a rigorous proof has remained elusive so far. \$\$ \ \$\$ An alternative approach to explain thermalization of quantum states is given by the concept of typicality. Typicality deals with typical states \(\Psi\) chosen from a subspace of Hilbert space with energy \(E\) and small fluctuations \(\delta\) around it. It assumes that the possible microstates of this subspace of Hilbert space are uniformly distributed random vectors. This is inspired by the microcanonical ensemble in classical statistical mechanics, which assumes equal weights for all accessible microstates with energy \(E\) within an energy allowance \(\delta\). It follows from the ergodic hypothesis, which states that the time spent in each part of phase space is proportional to its volume leading to large time averages being equated to ensemble averages. In typicality, the Hilbert space of quantum mechanics is hence treated as an analogue of classical phase space where statistical and thermodynamic properties can be defined. Since typicality merely shifts assumptions of statistical mechanics to the quantum realm, it does not provide a complete understanding of the emergence of thermalization on a fundamental microscopic level. \$\$ \ \$\$ To gain insights on quantum thermalization and derive it from a microscopic approach, we exclusively consider the fundamental laws of quantum mechanics. In the joint work with T. Hofmann, R. Thomale and M. Greiter, on which this thesis reports, we explore the ETH in generic local Hamiltonians in a two-dimensional spin-\(1/2\) lattice with random nearest neighbor spin-spin interactions and random on-site magnetic fields. This isolated quantum system is divided into a small subsystem weakly coupled to the remaining part, which is assumed to be large and which we refer to as bath. Eigenstates of the full quantum system as well as the action of local operators on those can then be decomposed in terms of a product basis of eigenstates of the small subsystem and the bath. Central to our analysis is the fact that the coupling between the subsystem and the bath, represented in terms of the uncoupled product eigenbasis, is given by an energy dependent random band matrix, which is obtained from both analytical and numerical considerations. \$\$ \ \$\$ Utilizing the methods of Dyson-Brownian random matrix theory for random band matrices, we analytically show that the overlaps of eigenstates of the full quantum system with the uncoupled product eigenbasis are described by Cauchy-Lorentz distributions close to their respective peaks. The result is supported by an extensive numerical study using exact diagonalization, where the numerical parameters for the overlap curve agree with the theoretical calculation. The information on the decomposition of the eigenstates of the full quantum system enables us to derive the reduced density matrix within the small subsystem given the pure density matrix of a single eigenstate. We show that in the large bath limit the reduced density matrix converges to a thermal density matrix with canonical Boltzmann probabilities determined by renormalized energies of the small subsystem which are shifted from their bare values due the influence of the coupling to the bath. The behavior of the reduced density matrix is confirmed through a finite size scaling analysis of the numerical data. Within our calculation, we make use of the pivotal result, that the density of states of a local random Hamiltonian is given by a Gaussian distribution under very general circumstances. As a consequence of our analysis, the quantum expectation value of any local observable in the subsystem agrees with its thermal expectation value, which proves the validity of the ETH in the equilibrium phase for the considered class of random local Hamiltonians and elevates it from hypothesis to theory. \$\$ \ \$\$ Our analysis of quantum thermalization solely relies on the application of quantum mechanics to large systems, locality and the absence of integrability. With the self-averaging property of large random matrices, random matrix theory does not entail a statistical assumption, but is rather applied as a mathematical tool to extract information about the behavior of large quantum systems. The canonical distribution of statistical mechanics is derived without resorting to statistical assumptions such as the concepts of ergodicity or maximal entropy, nor assuming any characteristics of quantum states such as in typicality. In future research, with this microscopic approach it may become possible to exactly pinpoint the origin of failure of quantum thermalization, e.g. in systems that exhibit many body localization or many body quantum scars. The theory further enables the systematic investigation of equilibration, i.e. to study the time scales on which thermalization takes place.}, subject = {Thermalisierung}, language = {en} }