@article{BruneckerMuessigArrowsmithetal.2020, author = {Brunecker, Carina and M{\"u}ssig, Jonas H. and Arrowsmith, Merle and Fantuzzi, Felipe and Stoy, Andreas and B{\"o}hnke, Julian and Hofmann, Alexander and Bertermann, R{\"u}diger and Engels, Bernd and Braunschweig, Holger}, title = {Boranediyl- and Diborane(4)-1,2-diyl-Bridged Platinum A-Frame Complexes}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {39}, doi = {10.1002/chem.202001168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214707}, pages = {8518 -- 8523}, year = {2020}, abstract = {Diplatinum A-frame complexes with a bridging (di)boron unit in the apex position were synthesized in a single step by the double oxidative addition of dihalo(di)borane precursors at a bis(diphosphine)-bridged Pt\(^{0}\)\(_{2}\) complex. While structurally analogous to well-known μ-borylene complexes, in which delocalized dative three-center-two-electron M-B-M bonding prevails, theoretical investigations into the nature of Pt-B bonding in these A-frame complexes show them to be rare dimetalla(di)boranes displaying two electron-sharing Pt-B σ-bonds. This is experimentally reflected in the low kinetic stability of these compounds, which are prone to loss of the (di)boron bridgehead unit.}, language = {en} } @article{BruecknerFantuzziStennettetal.2021, author = {Br{\"u}ckner, Tobias and Fantuzzi, Felipe and Stennett, Tom E. and Krummenacher, Ivo and Dewhurst, Rian D. and Engels, Bernd and Braunschweig, Holger}, title = {Isolation of neutral, mono-, and dicationic B\(_2\)P\(_2\) rings by diphosphorus addition to a boron-boron triple bond}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {24}, doi = {10.1002/anie.202102218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256451}, pages = {13661-13665}, year = {2021}, abstract = {The NHC-stabilised diboryne (B\(_2\)(SIDep)\(_2\); SIDep=1,3-bis(2,6-diethylphenyl)imidazolin-2-ylidene) undergoes a high-yielding P-P bond activation with tetraethyldiphosphine at room temperature to form a B\(_2\)P\(_2\) heterocycle via a diphosphoryldiborene by 1,2-diphosphination. The heterocycle can be oxidised to a radical cation and a dication, respectively, depending on the oxidant used and its counterion. Starting from the planar, neutral 1,3-bis(alkylidene)-1,3-diborata-2,4-diphosphoniocyclobutane, each oxidation step leads to decreased B-B distances and loss of planarity by cationisation. X-ray analyses in conjunction with DFT and CASSCF/NEVPT2 calculations reveal closed-shell singlet, butterfly-shaped structures for the NHC-stabilised dicationic B\(_2\)P\(_2\) rings, with their diradicaloid, planar-ring isomers lying close in energy.}, language = {en} } @unpublished{BoehnkeDellermannCeliketal.2018, author = {B{\"o}hnke, Julian and Dellermann, Theresa and Celik, Mehmet Ali and Krummenacher, Ivo and Dewhurst, Rian D. and Demeshko, Serhiy and Ewing, William C. and Hammond, Kai and Heß, Merlin and Bill, Eckhard and Welz, Eileen and R{\"o}hr, Merle I. S. and Mitric, Roland and Engels, Bernd and Meyer, Franc and Braunschweig, Holger}, title = {Isolation of diradical products of twisted double bonds}, series = {Nature Communications}, journal = {Nature Communications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160248}, year = {2018}, abstract = {Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound.}, language = {en} } @article{BoehnkeDellermannCeliketal.2018, author = {B{\"o}hnke, Julian and Dellermann, Theresa and Celik, Mehmet Ali and Krummenacher, Ivo and Dewhurst, Rian D. and Demeshko, Serhiy and Ewing, William C. and Hammond, Kai and Heß, Merlin and Bill, Eckhard and Welz, Eileen and R{\"o}hr, Merle I. S. and Mitric, Roland and Engels, Bernd and Meyer, Franc and Braunschweig, Holger}, title = {Isolation of diborenes and their 90°-twisted diradical congeners}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, number = {Article number: 1197}, doi = {10.1038/s41467-018-02998-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160431}, year = {2018}, abstract = {Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound.}, language = {en} } @article{BuendgenEngelsPeyerimhoff1991, author = {B{\"u}ndgen, P. and Engels, Bernd and Peyerimhoff, S.D.}, title = {An MRD-CI study of low-lying electronic states in CaF}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-58880}, year = {1991}, abstract = {Dipole moments and various spectroscopic constants of some low-lying electronic states of the CaF molecule have been calculated using the multireference single· and double-excitation configuration-interaction (MRD-CI) method. The electronic structure of the highly ionic molecule in various excited states can be explained in tenns of different polarisations of the mainly Cacentered valence electron in the field of the F\(^-\) anion. Plots of natural orbitals occupied by the valence electron in the different states give a qualitative picture of the charge distribution and provide a visualisation of the different polarisations of the valence electron in the various states. Comparisons with the electrostatic polarisation model ofT{\"o}rring, Ernstand K{\"a}ndler (TEK model) are made. The unknown A' \(^2 \Delta\) state is predicted to lie about 21200 cm\(^{-1}\) above the ground state.}, subject = {Organische Chemie}, language = {en} } @article{DietschreitWagnerLeetal.2020, author = {Dietschreit, Johannes C. B. and Wagner, Annika and Le, T. Anh and Klein, Philipp and Schindelin, Hermann and Opatz, Till and Engels, Bernd and Hellmich, Ute A. and Ochsenfeld, Christian}, title = {Predicting \(^{19}\)F NMR Chemical Shifts: A Combined Computational and Experimental Study of a Trypanosomal Oxidoreductase-Inhibitor Complex}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {31}, doi = {10.1002/anie.202000539}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214879}, pages = {12669 -- 12673}, year = {2020}, abstract = {The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor-protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable \(^{19}\)F chemical-shift predictions to deduce ligand-binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the \(^{19}\)F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleeping sickness. We include many protein-inhibitor conformations as well as monomeric and dimeric inhibitor-protein complexes, thus rendering it the largest computational study on chemical shifts of \(^{19}\)F nuclei in a biological context to date. Our predicted shifts agree well with those obtained experimentally and pave the way for future work in this area.}, language = {en} } @article{Engels1993, author = {Engels, Bernd}, title = {Study of influences of various excitation classes on ab initio calculated isotropic hyperfine coupling constants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-58973}, year = {1993}, abstract = {Reliable prediction of the isotropic hyperfine coupling constant A\(_{iso}\) is still a difficult task for ab initio calculations. Strang dependence on the method employed for its ca1culation has been found. Within a CI ansatz A\(_{iso}\) is considerably affected by the excitation classes taken into account within the CI calculation. In the present work the influence of various excitation classes on A\(_{iso}\) is examined. Calculations including all single, double, triple and a large part of the quadruple excitations are performed and the individual effects of the excitation classes are studied. It is found that the surprisingly good agreement found for S-CI treatments is due to large error cancellations. The importance of higher than double excitations arises from their indirect influence on the single excitations.}, subject = {Organische Chemie}, language = {en} } @article{Engels1994, author = {Engels, Bernd}, title = {Detailed study of the configuration selected multi-reference configuration interaction method combined with perturbation theory to correct the wave function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59019}, year = {1994}, abstract = {A reliable prediction of the isotropic hyperfine coupling constant A\(_{iso}\) is still a difficult task for ab initio calculations. In previous studies, the configuration selected multireference configuration interaction method in combination with perturbation theory to correct the wave function (MRCI/ B\(_K\)) yielded accurate isotropic hyperfine coupling constants very economically. The present study gives a detailed analysis of the MRCI/ B\(_K\) method based on the X\(^2 \pi\) state of CH as a test case. Furthermore, a comparison to various other methods such as Maller-Ptesset perturbation theory and the coupled cluster approach is made. The success of the MRCI/ B\(_K\) method in predicting isotropic hyperfine coupling constants is explained in terms of the inßuence of higher than double excitations.}, subject = {Organische Chemie}, language = {en} } @article{Engels1991, author = {Engels, Bernd}, title = {Estimation of the influence of the configurations neglected within truncated MR-CI wavefunctions on molecular properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-58890}, year = {1991}, abstract = {Reliable prediction of the isotropic hyperfine coupling constant, a\(_{iso}\), is still a difficult task for ab initio calculations. Strong dependence on the method used for its calculation is found. Within a truncated multi-referencc ansatz a\(_{iso}\) is strongly affected by the size ofthe reference space and the nurober of terms in the truncated Cl expansion. In the present paperdifferent effects of the neglected Cl space are discussed. Modified B\(_K\) and A\(_K\) methods are used to estimate the contributions ofthe neglected configurations. lt can be shown that a combination of both methods is able to recover about 90-9 S\% of the total error in a\(_{iso}\)· Furthermore, it was found that to obtain about 90\% of the B\(_K\) correction only about I 0-20\% ofthe configurations within H0 have to be corrected.}, subject = {Organische Chemie}, language = {en} } @article{EngelsPericReuteretal.1992, author = {Engels, Bernd and Peric, M. and Reuter, W. and Peyerimhoff, S.D. and Grein, F.}, title = {Study of the hyperfine coupling constants \(^{14}\)N and \(^1\)H) of the NH\(_2\) molecule in the X\(^2\)B\(_1\) ground state and the A\(^2\)A\(_1\) excited state}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-58937}, year = {1992}, abstract = {The hyperfine coupling constants (hfcc) A\(_{iso}\) and A\(_{ij}\) are calculated for the atoms of NH\(_2\) in its, two lowest-lying electronk states at various molecular geometries by means of the ab initio multireference configuration interaction .method. The vibronically averaged values of the hfccs for the K = 0 and 1 levels in \(^{14}\)N \(^1\)H\(_2\) in the energy range up to 20 000 cm\(^{-1}\) are computed. Polarization elfects which determine A\(_{iso}\) as well as a simple model to describe the dipolar hfccs are discussed. All resrilts are in excellent agreement with experimental data.}, subject = {Organische Chemie}, language = {en} }