@article{BellutBieberKraftetal.2023, author = {Bellut, Maximilian and Bieber, Michael and Kraft, Peter and Weber, Alexander N. R. and Stoll, Guido and Schuhmann, Michael K.}, title = {Delayed NLRP3 inflammasome inhibition ameliorates subacute stroke progression in mice}, series = {Journal of Neuroinflammation}, volume = {20}, journal = {Journal of Neuroinflammation}, number = {1}, doi = {10.1186/s12974-022-02674-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300599}, year = {2023}, abstract = {Background Ischemic stroke immediately evokes a strong neuro-inflammatory response within the vascular compartment, which contributes to primary infarct development under vessel occlusion as well as further infarct growth despite recanalization, referred to as ischemia/reperfusion injury. Later, in the subacute phase of stroke (beyond day 1 after recanalization), further inflammatory processes within the brain parenchyma follow. Whether this second wave of parenchymal inflammation contributes to an additional/secondary increase in infarct volumes and bears the potential to be pharmacologically targeted remains elusive. We addressed the role of the NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome in the subacute phase of ischemic stroke. Methods Focal cerebral ischemia was induced in C57Bl/6 mice by a 30-min transient middle cerebral artery occlusion (tMCAO). Animals were treated with the NLRP3 inhibitor MCC950 therapeutically 24 h after or prophylactically before tMCAO. Stroke outcome, including infarct size and functional deficits as well as the local inflammatory response, was assessed on day 7 after tMCAO. Results Infarct sizes on day 7 after tMCAO decreased about 35\% after delayed and about 60\% after prophylactic NLRP3 inhibition compared to vehicle. Functionally, pharmacological inhibition of NLRP3 mitigated the local inflammatory response in the ischemic brain as indicated by reduction of infiltrating immune cells and reactive astrogliosis. Conclusions Our results demonstrate that the NLRP3 inflammasome continues to drive neuroinflammation within the subacute stroke phase. NLRP3 inflammasome inhibition leads to a better long-term outcome—even when administered with a delay of 1 day after stroke induction, indicating ongoing inflammation-driven infarct progression. These findings may pave the way for eagerly awaited delayed treatment options in ischemic stroke.}, language = {en} } @article{BellutPappBieberetal.2022, author = {Bellut, Maximilian and Papp, Lena and Bieber, Michael and Kraft, Peter and Stoll, Guido and Schuhmann, Michael K.}, title = {NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in-vitro and protects blood-brain barrier integrity in murine stroke}, series = {Cell Death \& Disease}, volume = {13}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-021-04379-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265693}, year = {2022}, abstract = {In ischemic stroke (IS) impairment of the blood-brain barrier (BBB) has an important role in the secondary deterioration of neurological function. BBB disruption is associated with ischemia-induced inflammation, brain edema formation, and hemorrhagic infarct transformation, but the underlying mechanisms are incompletely understood. Dysfunction of endothelial cells (EC) may play a central role in this process. Although neuronal NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome upregulation is an established trigger of inflammation in IS, the contribution of its expression in EC is unclear. We here used brain EC, exposed them to oxygen and glucose deprivation (OGD) in vitro, and analyzed their survival depending on inflammasome inhibition with the NLRP3-specific drug MCC950. During OGD, EC death could significantly be reduced when targeting NLRP3, concomitant with diminished endothelial NLRP3 expression. Furthermore, MCC950 led to reduced levels of Caspase 1 (p20) and activated Gasdermin D as markers for pyroptosis. Moreover, inflammasome inhibition reduced the secretion of pro-inflammatory chemokines, cytokines, and matrix metalloproteinase-9 (MMP9) in EC. In a translational approach, IS was induced in C57Bl/6 mice by 60 mins transient middle cerebral artery occlusion and 23 hours of reperfusion. Stroke volume, functional outcome, the BBB integrity, and-in good agreement with the in vitro results-MMP9 secretion as well as EC survival improved significantly in MCC950-treated mice. In conclusion, our results establish the NLRP3 inflammasome as a critical pathogenic effector of stroke-induced BBB disruption by activating inflammatory signaling cascades and pyroptosis in brain EC.}, language = {en} } @article{BieberFoersterHaefelietal.2021, author = {Bieber, Michael and Foerster, Kathrin I. and Haefeli, Walter E. and Pham, Mirko and Schuhmann, Michael K. and Kraft, Peter}, title = {Treatment with edoxaban attenuates acute stroke severity in mice by reducing blood-brain barrier damage and inflammation}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms22189893}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284481}, year = {2021}, abstract = {Patients with atrial fibrillation and previous ischemic stroke (IS) are at increased risk of cerebrovascular events despite anticoagulation. In these patients, treatment with non-vitamin K oral anticoagulants (NOAC) such as edoxaban reduced the probability and severity of further IS without increasing the risk of major bleeding. However, the detailed protective mechanism of edoxaban has not yet been investigated in a model of ischemia/reperfusion injury. Therefore, in the current study we aimed to assess in a clinically relevant setting whether treatment with edoxaban attenuates stroke severity, and whether edoxaban has an impact on the local cerebral inflammatory response and blood-brain barrier (BBB) function after experimental IS in mice. Focal cerebral ischemia was induced by transient middle cerebral artery occlusion in male mice receiving edoxaban, phenprocoumon or vehicle. Infarct volumes, functional outcome and the occurrence of intracerebral hemorrhage were assessed. BBB damage and the extent of local inflammatory response were determined. Treatment with edoxaban significantly reduced infarct volumes and improved neurological outcome and BBB function on day 1 and attenuated brain tissue inflammation. In summary, our study provides evidence that edoxaban might exert its protective effect in human IS by modulating different key steps of IS pathophysiology, but further studies are warranted.}, language = {en} } @article{DoerkPeterlongoMannermaaetal.2019, author = {D{\"o}rk, Thilo and Peterlongo, Peter and Mannermaa, Arto and Bolla, Manjeet K. and Wang, Qin and Dennis, Joe and Ahearn, Thomas and Andrulis, Irene L. and Anton-Culver, Hoda and Arndt, Volker and Aronson, Kristan J. and Augustinsson, Annelie and Beane Freeman, Laura E. and Beckmann, Matthias W. and Beeghly-Fadiel, Alicia and Behrens, Sabine and Bermisheva, Marina and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Brauch, Hiltrud and Brenner, Hermann and Burwinkel, Barbara and Canzian, Federico and Chan, Tsun L. and Chang-Claude, Jenny and Chanock, Stephen J. and Choi, Ji-Yeob and Christiansen, Hans and Clarke, Christine L. and Couch, Fergus J. and Czene, Kamila and Daly, Mary B. and dos-Santos-Silva, Isabel and Dwek, Miriam and Eccles, Diana M. and Ekici, Arif B. and Eriksson, Mikael and Evans, D. Gareth and Fasching, Peter A. and Figueroa, Jonine and Flyger, Henrik and Fritschi, Lin and Gabrielson, Marike and Gago-Dominguez, Manuela and Gao, Chi and Gapstur, Susan M. and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Goldberg, Mark S. and Goldgar, David E. and Guen{\´e}l, Pascal and Haeberle, Lothar and Haimann, Christopher A. and H{\aa}kansson, Niclas and Hall, Per and Hamann, Ute and Hartman, Mikael and Hauke, Jan and Hein, Alexander and Hillemanns, Peter and Hogervorst, Frans B. L. and Hooning, Maartje J. and Hopper, John L. and Howell, Tony and Huo, Dezheng and Ito, Hidemi and Iwasaki, Motoki and Jakubowska, Anna and Janni, Wolfgang and John, Esther M. and Jung, Audrey and Kaaks, Rudolf and Kang, Daehee and Kapoor, Pooja Middha and Khusnutdinova, Elza and Kim, Sung-Won and Kitahara, Cari M. and Koutros, Stella and Kraft, Peter and Kristensen, Vessela N. and Kwong, Ava and Lambrechts, Diether and Le Marchand, Loic and Li, Jingmei and Lindstr{\"o}m, Sara and Linet, Martha and Lo, Wing-Yee and Long, Jirong and Lophatananon, Artitaya and Lubiński, Jan and Manoochehri, Mehdi and Manoukian, Siranoush and Margolin, Sara and Martinez, Elena and Matsuo, Keitaro and Mavroudis, Dimitris and Meindl, Alfons and Menon, Usha and Milne, Roger L. and Mohd Taib, Nur Aishah and Muir, Kenneth and Mulligan, Anna Marie and Neuhausen, Susan L. and Nevanlinna, Heli and Neven, Patrick and Newman, William G. and Offit, Kenneth and Olopade, Olufunmilayo I. and Olshan, Andrew F. and Olson, Janet E. and Olsson, H{\aa}kan and Park, Sue K. and Park-Simon, Tjoung-Won and Peto, Julian and Plaseska-Karanfilska, Dijana and Pohl-Rescigno, Esther and Presneau, Nadege and Rack, Brigitte and Radice, Paolo and Rashid, Muhammad U. and Rennert, Gad and Rennert, Hedy S. and Romero, Atocha and Ruebner, Matthias and Saloustros, Emmanouil and Schmidt, Marjanka K. and Schmutzler, Rita K. and Schneider, Michael O. and Schoemaker, Minouk J. and Scott, Christopher and Shen, Chen-Yang and Shu, Xiao-Ou and Simard, Jaques and Slager, Susan and Smichkoska, Snezhana and Southey, Melissa C. and Spinelli, John J. and Stone, Jennifer and Surowy, Harald and Swerdlow, Anthony J. and Tamimi, Rulla M. and Tapper, William J. and Teo, Soo H. and Terry, Mary Beth and Toland, Amanda E. and Tollenaar, Rob A. E. M. and Torres, Diana and Torres-Mej{\´i}a, Gabriela and Troester, Melissa A. and Truong, Th{\´e}r{\`e}se and Tsugane, Shoichiro and Untch, Michael and Vachon, Celine M. and van den Ouweland, Ans M. W. and van Veen, Elke M. and Vijai, Joseph and Wendt, Camilla and Wolk, Alicja and Yu, Jyh-Cherng and Zheng, Wei and Ziogas, Argyrios and Ziv, Elad and Dunnig, Alison and Pharaoh, Paul D. P. and Schindler, Detlev and Devilee, Peter and Easton, Douglas F.}, title = {Two truncating variants in FANCC and breast cancer risk}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, organization = {ABCTB Investigators, NBCS Collaborators}, doi = {10.1038/s41598-019-48804-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222838}, year = {2019}, abstract = {Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95\%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.}, language = {en} } @article{EssigBabilonVollmuthetal.2021, author = {Essig, Fabian and Babilon, Lilith and Vollmuth, Christoph and Kollikowski, Alexander M. and Pham, Mirko and Solymosi, L{\´a}szl{\´o} and Haeusler, Karl Georg and Kraft, Peter and Stoll, Guido and Schuhmann, Michael K.}, title = {High mobility group box 1 protein in cerebral thromboemboli}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {20}, issn = {1422-0067}, doi = {10.3390/ijms222011276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265568}, year = {2021}, abstract = {High-mobility group box 1 protein (HMGB1) is a damage-associated molecular pattern (DAMP) involved in neutrophil extracellular trap (NET) formation and thrombosis. NETs are regularly found in cerebral thromboemboli. We here analyzed associated HMGB1 expression in human thromboemboli retrieved via mechanical thrombectomy from 37 stroke patients with large vessel occlusion. HMGB1 was detected in all thromboemboli, accounting for 1.7\% (IQR 0.6-6.2\%) of the total thromboemboli area and was found to be colocalized with neutrophils and NETs and in spatial proximity to platelets. Correlation analysis revealed that the detection of HMGB1 was strongly related to the number of neutrophils (r = 0.58, p = 0.0002) and platelets (r = 0.51, p = 0.001). Our results demonstrate that HMGB1 is a substantial constituent of thromboemboli causing large vessel occlusion stroke.}, language = {en} } @article{EssigKollikowskiPhametal.2020, author = {Essig, Fabian and Kollikowski, Alexander M. and Pham, Mirko and Solymosi, L{\´a}szl{\´o} and Stoll, Guido and Haeusler, Karl Georg and Kraft, Peter and Schuhmann, Michael K.}, title = {Immunohistological analysis of neutrophils and neutrophil extracellular traps in human thrombemboli causing acute ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms21197387}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236192}, year = {2020}, abstract = {Ischemic stroke caused by thromboembolic occlusion of large cerebral arteries, such as the internal carotid (ICA) and/or the middle cerebral artery (MCA), is treated by mechanical thrombectomy (MT). MT allows salvage of the vessel-occluding thrombemboli, which most frequently originate from the left atrium or the left ventricle of the heart or from sites of plaque rupture within large arteries above the heart. Clot composition may influence the efficacy of (intravenous) thrombolysis and MT, respectively. We analyzed 37 human thrombemboli obtained from acute ischemic stroke patients during MT with special emphasis on histological staining of neutrophils and neutrophil extracellular traps (NETs). We found neutrophils as the main cellular component of cerebral thrombemboli but encountered considerable morphological heterogeneity. Neutrophils accumulated in the border region of fibrin-rich structures indicating possible interaction of neutrophils with distinct structural thrombembolus components. Web-like NETs were found in 35 of 37 thrombemboli in varying amounts. NETs were almost exclusively found within fibrin-rich areas. Importantly, stroke etiology, age and present oral anticoagulation was associated with morphological patterns and the amount of neutrophils. Correlation of histological data and imaging data revealed that relative Hounsfield units of cerebral thrombemboli positively correlated with the amount of red blood cells. In summary, our results demonstrate that neutrophils and NETs are substantial constituents of cerebral thrombemboli and contribute to their structural complexity.}, language = {en} } @article{FerreiraGamazonAlEjehetal.2019, author = {Ferreira, Manuel A. and Gamazon, Eric R. and Al-Ejeh, Fares and Aittom{\"a}ki, Kristiina and Andrulis, Irene L. and Anton-Culver, Hoda and Arason, Adalgeir and Arndt, Volker and Aronson, Kristan J. and Arun, Banu K. and Asseryanis, Ella and Azzollini, Jacopo and Balma{\~n}a, Judith and Barnes, Daniel R. and Barrowdale, Daniel and Beckmann, Matthias W. and Behrens, Sabine and Benitez, Javier and Bermisheva, Marina and Bialkowska, Katarzyna and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Bolla, Manjeet K. and Borg, Ake and Brauch, Hiltrud and Brenner, Hermann and Broeks, Annegien and Burwinkel, Barbara and Cald{\´e}s, Trinidad and Caligo, Maria A. and Campa, Daniele and Campbell, Ian and Canzian, Federico and Carter, Jonathan and Carter, Brian D. and Castelao, Jose E. and Chang-Claude, Jenny and Chanock, Stephen J. and Christiansen, Hans and Chung, Wendy K. and Claes, Kathleen B. M. and Clarke, Christine L. and Couch, Fergus J. and Cox, Angela and Cross, Simon S. and Czene, Kamila and Daly, Mary B. and de la Hoya, Miguel and Dennis, Joe and Devilee, Peter and Diez, Orland and D{\"o}rk, Thilo and Dunning, Alison M. and Dwek, Miriam and Eccles, Diana M. and Ejlertsen, Bent and Ellberg, Carolina and Engel, Christoph and Eriksson, Mikael and Fasching, Peter A. and Fletcher, Olivia and Flyger, Henrik and Friedman, Eitan and Frost, Debra and Gabrielson, Marike and Gago-Dominguez, Manuela and Ganz, Patricia A. and Gapstur, Susan M. and Garber, Judy and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Glendon, Gord and Godwin, Andrew K. and Goldberg, Mark S. and Goldgar, David E. and Gonz{\´a}lez-Neira, Anna and Greene, Mark H. and Gronwald, Jacek and Guen{\´e}l, Pascal and Haimann, Christopher A. and Hall, Per and Hamann, Ute and He, Wei and Heyworth, Jane and Hogervorst, Frans B. L. and Hollestelle, Antoinette and Hoover, Robert N. and Hopper, John L. and Hulick, Peter J. and Humphreys, Keith and Imyanitov, Evgeny N. and Isaacs, Claudine and Jakimovska, Milena and Jakubowska, Anna and James, Paul A. and Janavicius, Ramunas and Jankowitz, Rachel C. and John, Esther M. and Johnson, Nichola and Joseph, Vijai and Karlan, Beth Y. and Khusnutdinova, Elza and Kiiski, Johanna I. and Ko, Yon-Dschun and Jones, Michael E. and Konstantopoulou, Irene and Kristensen, Vessela N. and Laitman, Yael and Lambrechts, Diether and Lazaro, Conxi and Leslie, Goska and Lester, Jenny and Lesueur, Fabienne and Lindstr{\"o}m, Sara and Long, Jirong and Loud, Jennifer T. and Lubiński, Jan and Makalic, Enes and Mannermaa, Arto and Manoochehri, Mehdi and Margolin, Sara and Maurer, Tabea and Mavroudis, Dimitrios and McGuffog, Lesley and Meindl, Alfons and Menon, Usha and Michailidou, Kyriaki and Miller, Austin and Montagna, Marco and Moreno, Fernando and Moserle, Lidia and Mulligan, Anna Marie and Nathanson, Katherine L. and Neuhausen, Susan L. and Nevanlinna, Heli and Nevelsteen, Ines and Nielsen, Finn C. and Nikitina-Zake, Liene and Nussbaum, Robert L. and Offit, Kenneth and Olah, Edith and Olopade, Olufunmilayo I. and Olsson, H{\aa}kan and Osorio, Ana and Papp, Janos and Park-Simon, Tjoung-Won and Parsons, Michael T. and Pedersen, Inge Sokilde and Peixoto, Ana and Peterlongo, Paolo and Pharaoh, Paul D. P. and Plaseska-Karanfilska, Dijana and Poppe, Bruce and Presneau, Nadege and Radice, Paolo and Rantala, Johanna and Rennert, Gad and Risch, Harvey A. and Saloustros, Emmanouil and Sanden, Kristin and Sawyer, Elinor J. and Schmidt, Marjanka K. and Schmutzler, Rita K. and Sharma, Priyanka and Shu, Xiao-Ou and Simard, Jaques and Singer, Christian F. and Soucy, Penny and Southey, Melissa C. and Spinelli, John J. and Spurdle, Amanda B. and Stone, Jennifer and Swerdlow, Anthony J. and Tapper, William J. and Taylor, Jack A. and Teixeira, Manuel R. and Terry, Mary Beth and Teul{\´e}, Alex and Thomassen, Mads and Th{\"o}ne, Kathrin and Thull, Darcy L. and Tischkowitz, Marc and Toland, Amanda E. and Torres, Diana and Truong, Th{\´e}r{\`e}se and Tung, Nadine and Vachon, Celine M. and van Asperen, Christi J. and van den Ouweland, Ans M. W. and van Rensburg, Elizabeth J. and Vega, Ana and Viel, Alexandra and Wang, Qin and Wappenschmidt, Barbara and Weitzel, Jeffrey N. and Wendt, Camilla and Winqvist, Robert and Yang, Xiaohong R. and Yannoukakos, Drakoulis and Ziogas, Argyrios and Kraft, Peter and Antoniou, Antonis C. and Zheng, Wei and Easton, Douglas F. and Milne, Roger L. and Beesley, Jonathan and Chenevix-Trench, Georgia}, title = {Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, organization = {EMBRACE Collaborators, GC-HBOC Study Collaborators, GEMO Study Collaborators, ABCTB Investigators, HEBON Investigators, BCFR Investigators}, doi = {10.1038/s41467-018-08053-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228024}, year = {2019}, abstract = {Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.}, language = {en} } @article{GabrielJirůHillmannKraftetal.2020, author = {Gabriel, Katharina M. A. and J{\´i}rů-Hillmann, Steffi and Kraft, Peter and Selig, Udo and R{\"u}cker, Victoria and M{\"u}hler, Johannes and D{\"o}tter, Klaus and Keidel, Matthias and Soda, Hassan and Rascher, Alexandra and Schneider, Rolf and Pfau, Mathias and Hoffmann, Roy and Stenzel, Joachim and Benghebrid, Mohamed and Goebel, Tobias and Doerck, Sebastian and Kramer, Daniela and Haeusler, Karl Georg and Volkmann, Jens and Heuschmann, Peter U. and Fluri, Felix}, title = {Two years' experience of implementing a comprehensive telemedical stroke network comprising in mainly rural region: the Transregional Network for Stroke Intervention with Telemedicine (TRANSIT-Stroke)}, series = {BMC Neurology}, volume = {20}, journal = {BMC Neurology}, doi = {10.1186/s12883-020-01676-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229214}, year = {2020}, abstract = {Background Telemedicine improves the quality of acute stroke care in rural regions with limited access to specialized stroke care. We report the first 2 years' experience of implementing a comprehensive telemedical stroke network comprising all levels of stroke care in a defined region. Methods The TRANSIT-Stroke network covers a mainly rural region in north-western Bavaria (Germany). All hospitals providing acute stroke care in this region participate in TRANSIT-Stroke, including four hospitals with a supra-regional certified stroke unit (SU) care (level III), three of those providing teleconsultation to two hospitals with a regional certified SU (level II) and five hospitals without specialized SU care (level I). For a two-year-period (01/2015 to 12/2016), data of eight of these hospitals were available; 13 evidence-based quality indicators (QIs) related to processes during hospitalisation were evaluated quarterly and compared according to predefined target values between level-I- and level-II/III-hospitals. Results Overall, 7881 patients were included (mean age 74.6 years +/- 12.8; 48.4\% female). In level-II/III-hospitals adherence of all QIs to predefined targets was high ab initio. In level-I-hospitals, three patterns of QI-development were observed: a) high adherence ab initio (31\%), mainly in secondary stroke prevention; b) improvement over time (44\%), predominantly related to stroke specific diagnosis and in-hospital organization; c) no clear time trends (25\%). Overall, 10 out of 13 QIs reached predefined target values of quality of care at the end of the observation period. Conclusion The implementation of the comprehensive TRANSIT-Stroke network resulted in an improvement of quality of care in level-I-hospitals.}, language = {en} } @article{GoebelPankratzAsaridouetal.2016, author = {G{\"o}bel, Kerstin and Pankratz, Susann and Asaridou, Chloi-Magdalini and Herrmann, Alexander M. and Bittner, Stefan and Merker, Monika and Ruck, Tobias and Glumm, Sarah and Langhauser, Friederike and Kraft, Peter and Krug, Thorsten F. and Breuer, Johanna and Herold, Martin and Gross, Catharina C. and Beckmann, Denise and Korb-Pap, Adelheid and Schuhmann, Michael K. and Kuerten, Stefanie and Mitroulis, Ioannis and Ruppert, Clemens and Nolte, Marc W. and Panousis, Con and Klotz, Luisa and Kehrel, Beate and Korn, Thomas and Langer, Harald F. and Pap, Thomas and Nieswandt, Bernhard and Wiendl, Heinz and Chavakis, Triantafyllos and Kleinschnitz, Christoph and Meuth, Sven G.}, title = {Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {11626}, doi = {10.1038/ncomms11626}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165503}, year = {2016}, abstract = {Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.}, language = {en} } @article{HansenSeilerRumpfetal.2012, author = {Hansen, Niels and Seiler, Carola and Rumpf, Julian and Kraft, Peter and Dlaske, Henry and Abele-Horn, Marianne and Muellges, Wolfgang}, title = {Human Tuberculous Meningitis Caused by \(Mycobacterium\) \(caprae\)}, series = {Case Reports in Neurology}, volume = {4}, journal = {Case Reports in Neurology}, number = {1}, doi = {10.1159/000337299}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123425}, pages = {54-60}, year = {2012}, abstract = {INTRODUCTION: Tuberculous meningitis (TM) causes substantial morbidity and mortality in humans. Human TM has been known to be induced by bacteria from the Mycobacterium tuberculosis complex (MTBC), such as M. tuberculosis and M. bovis. CASE PRESENTATION: We describe a case of meningitis treated with fosfomycin, which showed partial effectiveness in an 80-year-old patient. After a lethal myocardial infarction, M. caprae (MC) was identified in cerebrospinal fluid culture. This isolated acid-fast organism was first identified as MTBC by MTBC-specific PCR (16S rDNA-PCR). Furthermore, species-specific identification of the isolate was done by gyrB PCR-restriction fragment length polymorphism analysis of a part of gyrB DNA. Colony morphology of the isolated MC strain showed dysgonic growth on Lowenstein-Jensen medium. The strain was susceptible to pyrazinamide (PZA). CONCLUSION: This isolated strain was convincingly identified as MC according to the phenotypic and genotypic characteristics and PZA sensitivity. This is the first report of MC causing TM.}, language = {en} }