@article{HuflageKunzHendeletal.2023, author = {Huflage, Henner and Kunz, Andreas Steven and Hendel, Robin and Kraft, Johannes and Weick, Stefan and Razinskas, Gary and Sauer, Stephanie Tina and Pennig, Lenhard and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Obesity-related pitfalls of virtual versus true non-contrast imaging — an intraindividual comparison in 253 oncologic patients}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {9}, issn = {2075-4418}, doi = {10.3390/diagnostics13091558}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313519}, year = {2023}, abstract = {Objectives: Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. Materials and Methods: A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m\(^2\)) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m\(^2\) (n = 110), pre-obese: 25-29.9 kg/m\(^2\) (n = 73), and obese: >30 kg/m\(^2\) (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. Results: While arterial contrast phases in DECT were associated with a higher CTDI\(_{vol}\) than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R\(^2\) = 0.738) and SECT (R\(^2\) = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1\%) compared with non-obese (0\%) and pre-obese patients (4.1\%). Conclusion: DECT facilitates a 30.8\% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients.}, language = {en} } @article{KraftWeickBreueretal.2022, author = {Kraft, Johannes and Weick, Stefan and Breuer, Kathrin and Lutyj, Paul and Bratengeier, Klaus and Exner, Florian and Richter, Anne and Tamihardja, J{\"o}rg and Lisowski, Dominik and Polat, B{\"u}lent and Flentje, Michael}, title = {Treatment plan comparison for irradiation of multiple brain metastases with hippocampal avoidance whole brain radiotherapy and simultaneous integrated boost using the Varian Halcyon and the Elekta Synergy platforms}, series = {Radiation Oncology}, volume = {17}, journal = {Radiation Oncology}, doi = {10.1186/s13014-022-02156-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301221}, year = {2022}, abstract = {No abstract available.}, language = {en} } @article{LisowskiLutyjAbazarietal.2023, author = {Lisowski, Dominik and Lutyj, Paul and Abazari, Arya and Weick, Stefan and Traub, Jan and Polat, B{\"u}lent and Flentje, Michael and Kraft, Johannes}, title = {Impact of Radiotherapy on Malfunctions and Battery Life of Cardiac Implantable Electronic Devices in Cancer Patients}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {19}, issn = {2072-6694}, doi = {10.3390/cancers15194830}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358008}, year = {2023}, abstract = {Purpose: This study analyses a large number of cancer patients with CIEDs for device malfunction and premature battery depletion by device interrogation after each radiotherapy fraction and compares different guidelines in regard to patient safety. Methods: From 2007 to 2022, a cohort of 255 patients was analyzed for CIED malfunctions via immediate device interrogation after every RT fraction. Results: Out of 324 series of radiotherapy treatments, with a total number of 5742 CIED interrogations, nine device malfunctions (2.8\%) occurred. Switching into back-up/safety mode and software errors occurred four times each. Once, automatic read-out could not be performed. The median prescribed cumulative dose at planning target volume (PTV) associated with CIED malfunction was 45.0 Gy (IQR 36.0-64.0 Gy), with a median dose per fraction of 2.31 Gy (IQR 2.0-3.0 Gy). The median maximum dose at the CIED at time of malfunction was 0.3 Gy (IQR 0.0-1.3 Gy). No correlation between CIED malfunction and maximum photon energy (p = 0.07), maximum dose at the CIED (p = 0.59) nor treatment localization (p = 0.41) could be detected. After excluding the nine malfunctions, premature battery depletion was only observed three times (1.2\%). Depending on the national guidelines, 1-9 CIED malfunctions in this study would have been detected on the day of occurrence and in none of the cases would patient safety have been compromised. Conclusion: Radiation-induced malfunctions of CIEDs and premature battery depletion are rare. If recommendations of national safety guidelines are followed, only a portion of the malfunctions would be detected directly after occurrence. Nevertheless, patient safety would not be compromised.}, language = {en} } @article{MantelMuellerKleineetal.2021, author = {Mantel, Frederick and M{\"u}ller, Elena and Kleine, Philip and Zimmermann, Marcus and Exner, Florian and Richter, Anne and Weick, Stefan and Str{\"o}hle, Serge and Polat, B{\"u}lent and H{\"o}cht, Stefan and Flentje, Michael}, title = {Chemoradiotherapy by intensity-modulated radiation therapy with simultaneous integrated boost in locally advanced or oligometastatic non-small-cell lung cancer-a two center experience}, series = {Strahlentherapie und Onkologie}, volume = {197}, journal = {Strahlentherapie und Onkologie}, number = {5}, issn = {1439-099X}, doi = {10.1007/s00066-021-01756-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264821}, pages = {405-415}, year = {2021}, abstract = {Purpose Integrating moderate hypofractionation to the macroscopic tumor with elective nodal irradiation while sparing the organs at risk (OAR) in chemoradiotherapy of locally advanced non-small-cell lung cancer. Methods From 2010-2018, treatment, patient and tumor characteristics of 138 patients from two radiation therapy centers were assessed. Chemoradiotherapy by intensity-modulated radiation therapy (IMRT) with a simultaneous integrated boost (SIB) to the primary tumor and macroscopic lymph node metastases was used. Results A total of 124 (90\%) patients received concurrent chemotherapy. 106 (76\%) patients had UICC (Union for International Cancer Control) stage ≥IIIB and 21 (15\%) patients had an oligometastatic disease (UICC stage IV). Median SIB and elective total dose was 61.6 and 50.4 Gy in 28 fractions, respectively. Furthermore, 64 patients (46\%) had an additional sequential boost to the primary tumor after the SIB-IMRT main series: median 6.6 Gy in median 3 fractions. The median cumulative mean lung dose was 15.6 Gy (range 6.2-29.5 Gy). Median follow-up and radiological follow-up for all patients was 18.0 months (range 0.6-86.9) and 16.0 months (range 0.2-86.9), respectively. Actuarial local control rates at 1, 2 and 3 years were 80.4, 68.4 and 57.8\%. Median overall survival and progression-free survival was 30.0 months (95\% confidence interval [CI] 23.5-36.4) and 12.1 months (95\% CI 8.2-16.0), respectively. Treatment-related toxicity was moderate. Radiation-induced pneumonitis grade 2 and grade 3 occurred in 13 (9.8\%) and 3 (2.3\%) patients. Conclusions Chemoradiotherapy using SIB-IMRT showed promising local tumor control rates and acceptable toxicity in patients with locally advanced and in part oligometastatic lung cancer. The SIB concept, resulting in a relatively low mean lung dose, was associated with low numbers of clinically relevant pneumonitis. The overall survival appears promising in the presence of a majority of patients with UICC stage ≥IIIB disease.}, language = {en} } @article{RichterExnerBratengeieretal.2019, author = {Richter, Anne and Exner, Florian and Bratengeier, Klaus and Polat, B{\"u}lent and Flentje, Michael and Weick, Stefan}, title = {Impact of beam configuration on VMAT plan quality for Pinnacle\(^3\)Auto-Planning for head and neck cases}, series = {Radiation Oncology}, volume = {14}, journal = {Radiation Oncology}, doi = {10.1186/s13014-019-1211-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200301}, pages = {12}, year = {2019}, abstract = {Background The purpose of this study was to compare automatically generated VMAT plans to find the superior beam configurations for Pinnacle3 Auto-Planning and share "best practices". Methods VMAT plans for 20 patients with head and neck cancer were generated using Pinnacle3 Auto-Planning Module (Pinnacle3 Version 9.10) with different beam setup parameters. VMAT plans for single (V1) or double arc (V2) and partial or full gantry rotation were optimized. Beam configurations with different collimator positions were defined. Target coverage and sparing of organs at risk were evaluated based on scoring of an evaluation parameter set. Furthermore, dosimetric evaluation was performed based on the composite objective value (COV) and a new cross comparison method was applied using the COVs. Results The evaluation showed a superior plan quality for double arcs compared to one single arc or two single arcs for all cases. Plan quality was superior if a full gantry rotation was allowed during optimization for unilateral target volumes. A double arc technique with collimator setting of 15° was superior to a double arc with collimator 60° and a two single arcs with collimator setting of 15° and 345°. Conclusion The evaluation showed that double and full arcs are superior to single and partial arcs in terms of organs at risk sparing even for unilateral target volumes. The collimator position was found as an additional setup parameter, which can further improve the target coverage and sparing of organs at risk.}, language = {en} } @article{RichterPolatLawrenzetal.2016, author = {Richter, Anne and Polat, B{\"u}lent and Lawrenz, Ingulf and Weick, Stefan and Sauer, Otto and Flentje, Michael and Mantel, Frederick}, title = {Initial results for patient setup verification using transperineal ultrasound and cone beam CT in external beam radiation therapy of prostate cancer}, series = {Radiation Oncology}, volume = {11}, journal = {Radiation Oncology}, number = {147}, doi = {10.1186/s13014-016-0722-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147677}, year = {2016}, abstract = {Evaluation of set up error detection by a transperineal ultrasound in comparison with a cone beam CT (CBCT) based system in external beam radiation therapy (EBRT) of prostate cancer. Methods: Setup verification was performed with transperineal ultrasound (TPUS) and CBCT for 10 patients treated with EBRT for prostate cancer. In total, 150 ultrasound and CBCT scans were acquired in rapid succession and analyzed for setup errors. The deviation between setup errors of the two modalities was evaluated separately for each dimension. Results: A moderate correlation in lateral, vertical and longitudinal direction was observed comparing the setup errors. Mean differences between TPUS and CBCT were (-2.7 ± 2.3) mm, (3.0 ± 2.4) mm and (3.2 ± 2.7) mm in lateral, vertical and longitudinal direction, respectively. The mean Euclidean difference between TPUS and CBCT was (6.0 ± 3.1) mm. Differences up to 19.2 mm were observed between the two imaging modalities. Discrepancies between TPUS and CBCT of at least 5 mm occurred in 58 \% of monitored treatment sessions. Conclusion: Setup differences between TPUS and CBCT are 6 mm on average. Although the correlation of the setup errors determined by the two different image modalities is rather week, the combination of setup verification by CBCT and intrafraction motion monitoring by TPUS imaging can use the benefits of both imaging modalities.}, language = {en} } @article{RichterWegenerBreueretal.2021, author = {Richter, Anne and Wegener, Sonja and Breuer, Kathrin and Razinskas, Gary and Weick, Stefan and Exner, Florian and Bratengeier, Klaus and Flentje, Michael and Sauer, Otto and Polat, B{\"u}lent}, title = {Comparison of sliding window and field-in-field techniques for tangential whole breast irradiation using the Halcyon and Synergy Agility systems}, series = {Radiation Oncology}, volume = {16}, journal = {Radiation Oncology}, doi = {10.1186/s13014-021-01942-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265704}, year = {2021}, abstract = {Background To implement a tangential treatment technique for whole breast irradiation using the Varian Halcyon and to compare it with Elekta Synergy Agility plans. Methods For 20 patients two comparable treatment plans with respect to dose coverage and normal tissue sparing were generated. Tangential field-in-field treatment plans (Pinnacle/Synergy) were replanned using the sliding window technique (Eclipse/Halcyon). Plan specific QA was performed using the portal Dosimetry and the ArcCHECK phantom. Imaging and treatment dose were evaluated for treatment delivery on both systems using a modified CIRS Phantom. Results The mean number of monitor units for a fraction dose of 2.67 Gy was 515 MUs and 260 MUs for Halcyon and Synergy Agility plans, respectively. The homogeneity index and dose coverage were similar for both treatment units. The plan specific QA showed good agreement between measured and calculated plans. All Halcyon plans passed portal dosimetry QA (3\%/2 mm) with 100\% points passing and ArcCheck QA (3\%/2 mm) with 99.5\%. Measurement of the cumulated treatment and imaging dose with the CIRS phantom resulted in lower dose to the contralateral breast for the Halcyon plans. Conclusions For the Varian Halcyon a plan quality similar to the Elekta Synergy device was achieved. For the Halcyon plans the dose contribution from the treatment fields to the contralateral breast was even lower due to less interleaf transmission of the Halcyon MLC and a lower contribution of scattered dose from the collimator system.}, language = {en} } @article{RichterWeickKriegeretal.2017, author = {Richter, Anne and Weick, Stefan and Krieger, Thomas and Exner, Florian and Kellner, Sonja and Polat, B{\"u}lent and Flentje, Michael}, title = {Evaluation of a software module for adaptive treatment planning and re-irradiation}, series = {Radiation Oncology}, volume = {12}, journal = {Radiation Oncology}, number = {205}, doi = {10.1186/s13014-017-0943-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158711}, year = {2017}, abstract = {Background: The aim of this work is to validate the Dynamic Planning Module in terms of usability and acceptance in the treatment planning workflow. Methods: The Dynamic Planning Module was used for decision making whether a plan adaptation was necessary within one course of radiation therapy. The Module was also used for patients scheduled for re-irradiation to estimate the dose in the pretreated region and calculate the accumulated dose to critical organs at risk. During one year, 370 patients were scheduled for plan adaptation or re-irradiation. All patient cases were classified according to their treated body region. For a sub-group of 20 patients treated with RT for lung cancer, the dosimetric effect of plan adaptation during the main treatment course was evaluated in detail. Changes in tumor volume, frequency of re-planning and the time interval between treatment start and plan adaptation were assessed. Results: The Dynamic Planning Tool was used in 20\% of treated patients per year for both approaches nearly equally (42\% plan adaptation and 58\% re-irradiation). Most cases were assessed for the thoracic body region (51\%) followed by pelvis (21\%) and head and neck cases (10\%). The sub-group evaluation showed that unintended plan adaptation was performed in 38\% of the scheduled cases. A median time span between first day of treatment and necessity of adaptation of 17 days (range 4-35 days) was observed. PTV changed by 12 ± 12\% on average (maximum change 42\%). PTV decreased in 18 of 20 cases due to tumor shrinkage and increased in 2 of 20 cases. Re-planning resulted in a reduction of the mean lung dose of the ipsilateral side in 15 of 20 cases. Conclusion: The experience of one year showed high acceptance of the Dynamic Planning Module in our department for both physicians and medical physicists. The re-planning can potentially reduce the accumulated dose to the organs at risk and ensure a better target volume coverage. In the re-irradiation situation, the Dynamic Planning Tool was used to consider the pretreatment dose, to adapt the actual treatment schema more specifically and to review the accumulated dose.}, language = {en} } @article{RichterWechWengetal.2020, author = {Richter, Julian A. J. and Wech, Tobias and Weng, Andreas M. and Stich, Manuel and Weick, Stefan and Breuer, Kathrin and Bley, Thorsten A. and K{\"o}stler, Herbert}, title = {Free-breathing self-gated 4D lung MRI using wave-CAIPI}, series = {Magnetic Resonance in Medicine}, volume = {84}, journal = {Magnetic Resonance in Medicine}, number = {6}, doi = {10.1002/mrm.28383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218075}, pages = {3223 -- 3233}, year = {2020}, abstract = {Purpose The aim of this study was to compare the wave-CAIPI (controlled aliasing in parallel imaging) trajectory to the Cartesian sampling for accelerated free-breathing 4D lung MRI. Methods The wave-CAIPI k-space trajectory was implemented in a respiratory self-gated 3D spoiled gradient echo pulse sequence. Trajectory correction applying the gradient system transfer function was used, and images were reconstructed using an iterative conjugate gradient SENSE (CG SENSE) algorithm. Five healthy volunteers and one patient with squamous cell carcinoma in the lung were examined on a clinical 3T scanner, using both sampling schemes. For quantitative comparison of wave-CAIPI and standard Cartesian imaging, the normalized mutual information and the RMS error between retrospectively accelerated acquisitions and their respective references were calculated. The SNR ratios were investigated in a phantom study. Results The obtained normalized mutual information values indicate a lower information loss due to acceleration for the wave-CAIPI approach. Average normalized mutual information values of the wave-CAIPI acquisitions were 10\% higher, compared with Cartesian sampling. Furthermore, the RMS error of the wave-CAIPI technique was lower by 19\% and the SNR was higher by 14\%. Especially for short acquisition times (down to 1 minute), the undersampled Cartesian images showed an increased artifact level, compared with wave-CAIPI. Conclusion The application of the wave-CAIPI technique to 4D lung MRI reduces undersampling artifacts, in comparison to a Cartesian acquisition of the same scan time. The benefit of wave-CAIPI sampling can therefore be traded for shorter examinations, or enhancing image quality of undersampled 4D lung acquisitions, keeping the scan time constant.}, language = {en} } @article{TamihardjaLawrenzLutyjetal.2022, author = {Tamihardja, J{\"o}rg and Lawrenz, Ingulf and Lutyj, Paul and Weick, Stefan and Guckenberger, Matthias and Polat, B{\"u}lent and Flentje, Michael}, title = {Propensity score-matched analysis comparing dose-escalated intensity-modulated radiation therapy versus external beam radiation therapy plus high-dose-rate brachytherapy for localized prostate cancer}, series = {Strahlentherapie und Onkologie}, volume = {198}, journal = {Strahlentherapie und Onkologie}, number = {8}, doi = {10.1007/s00066-022-01953-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325055}, pages = {735-743}, year = {2022}, abstract = {Purpose Dose-escalated external beam radiation therapy (EBRT) and EBRT + high-dose-rate brachytherapy (HDR-BT) boost are guideline-recommended treatment options for localized prostate cancer. The purpose of this study was to compare long-term outcome and toxicity of dose-escalated EBRT versus EBRT + HDR-BT boost. Methods From 2002 to 2019, 744 consecutive patients received either EBRT or EBRT + HDR-BT boost, of whom 516 patients were propensity score matched. Median follow-up was 95.3 months. Cone beam CT image-guided EBRT consisted of 33 fractions of intensity-modulated radiation therapy with simultaneous integrated boost up to 76.23 Gy (D\(_{Mean}\)). Combined treatment was delivered as 46 Gy (D\(_{Mean}\)) EBRT, followed by two fractions HDR-BT boost with 9 Gy (D\(_{90\\%}\)). Propensity score matching was applied before analysis of the primary endpoint, estimated 10-year biochemical relapse-free survival (bRFS), and the secondary endpoints metastasis-free survival (MFS) and overall survival (OS). Prognostic parameters were analyzed by Cox proportional hazard modelling. Genitourinary (GU)/gastrointestinal (GI) toxicity evaluation used the Common Toxicity Criteria for Adverse Events (v5.0). Results The estimated 10-year bRFS was 82.0\% vs. 76.4\% (p = 0.075) for EBRT alone versus combined treatment, respectively. The estimated 10-year MFS was 82.9\% vs. 87.0\% (p = 0.195) and the 10-year OS was 65.7\% vs. 68.9\% (p = 0.303), respectively. Cumulative 5‑year late GU ≥ grade 2 toxicities were seen in 23.6\% vs. 19.2\% (p = 0.086) and 5‑year late GI ≥ grade 2 toxicities in 11.1\% vs. 5.0\% of the patients (p = 0.002); cumulative 5‑year late grade 3 GU toxicity occurred in 4.2\% vs. 3.6\% (p = 0.401) and GI toxicity in 1.0\% vs. 0.3\% (p = 0.249), respectively. Conclusion Both treatment groups showed excellent long-term outcomes with low rates of severe toxicity.}, language = {en} }