@phdthesis{Aboagye2019, author = {Aboagye, Benjamin}, title = {Behavioral and physiologic consequences of inducible inactivation of the \(Tryptophan\) \(hydroxylase\) 2 gene in interaction with early-life adversity}, doi = {10.25972/OPUS-17358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173581}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Disruptions in brain serotonin (5-hydroxytryptamine, 5-HT) signaling pathways have been associated with etiology and pathogenesis of various neuropsychiatric disorders, but specific neural mechanisms of 5-HT function are yet to be fully elucidated. Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme for brain 5-HT synthesis. Therefore, in this study a tamoxifen (Tam)-inducible cre-mediated conditional gene (Tph2) knockout in adult mouse brain (Tph2icKO) has been established to decipher the specific role of brain 5-HT in the regulation of behavior in adulthood. Immunohistochemistry and high-performance liquid chromatography (HPLC) were used first to test the efficacy of Tam-inducible inactivation of Tph2 and consequential reduction of 5-HT in adult mouse brain. Tam treatment resulted in ≥90\% reduction in the number of 5-HT immuno-reactive cells in the anterior raphe nuclei. HPLC revealed a significant reduction in concentration of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) in selected brain regions of Tph2icKO, indicating the effectiveness of the protocol used. Second, standard behavioral tests were used to assess whether reduced brain 5-HT concentrations could alter anxiety-, fear- and depressive-like behavior in mice. No altered anxiety- and depressive-like behaviors were observed in Tph2icKO compared to control mice (Tph2CON) in all indices measured, but Tph2icKO mice exhibited intense and sustained freezing during context-dependent fear memory retrieval. Tph2icKO mice also exhibited locomotor hyperactivity in the aversive environments, such as the open field, and consumed more food and fluid than Tph2CON mice. Lastly, the combined effect of maternal separation (MS) stress and adult brain 5-HT depletion on behavior was assessed in male and female mice. Here, MS stress, 5-HT depletion and their interaction elicited anxiety-like behavior in a sex-dependent manner. MS reduced exploratory behavior in both male and female mice. Reduced 5-HT enhanced anxiety in female, but not in male mice. Furthermore, expression of genes related to the 5-HT system and emotionality (Tph2, Htr1a, Htr2a, Maoa and Avpr1a) was assessed by performing a quantitative real-time PCR. In Tph2icKO mice there was a reduction in expression of Tph2 in the raphe nuclei of both male and female mice. Interaction between MS stress and 5-HT deficiency was detected showing increased Htr2a and Maoa expression in raphe and hippocampus respectively of female mice. In male mice, MS stress and 5-HT depletion interaction effects reduced Avpr1a expression in raphe, while the expression of Htr1a, Htr2a and Maoa was differentially altered by 5-HT depletion and MS in various brain regions.}, subject = {Anxiety}, language = {en} } @phdthesis{Araragi2013, author = {Araragi, Naozumi}, title = {Electrophysiological investigation of two animal models for emotional disorders - serotonin transporter knockout mice and tryptophan hydroxylase 2 knockout mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83265}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Serotonin (5-HT) has been implicated in the regulation of emotions as well as in its pathological states, such as anxiety disorders and depression. Mice with targeted deletion of genes encoding various mediators of central serotonergic neurotransmission therefore provides a powerful tool in understanding contributions of such mediators to homeostatic mechanisms as well as to the development of human emotional disorders. Within this thesis a battery of electrophysiological recordings were conducted in the dorsal raphe nucleus (DRN) and the hippocampus of two murine knockout lines with deficient serotonergic systems. Serotonin transporter knockout mice (5-Htt KO), which lack protein responsible for reuptake of 5-HT from the extracellular space and tryptophan hydroxylase 2 knockout (Tph2 KO) mice, which lack the gene encoding the neuronal 5-HT-synthesising enzyme. First, 5-HT1A receptor-mediated autoinhibition of serotonergic neuron firing in the DRN was assessed using the loose-seal cell-attached configuration. Stimulation of 5-HT1A receptors by a selective agonist, R-8-hydroxy-2-(di-n-propylamino)tetralin (R-8-OH-DPAT), showed a mild sensitisation and a marked desensitisation of these receptors in Tph2 KO and 5-Htt KO mice, respectively. While application of tryptophan, a precursor of 5-HT and a substrate of Tph2, did not cause autoinhibition in Tph2 KO mice due to the lack of endogenously produced 5-HT, data from 5-Htt KO mice as well as heterozygous mice of both KO mice lines demonstrated the presence of autoinhibitory mechanisms as normal as seen in wildtype (WT) controls. When the Tph2-dependent step in the 5-HT synthesis pathway was bypassed by application of 5-hydroxytryptophan (5-HTP), serotonergic neurons of both Tph2 KO and 5-Htt KO mice showed decrease in firing rates at lower concentrations of 5-HTP than in WT controls. Elevated responsiveness of serotonergic neurons from Tph2 KO mice correspond to mild sensitisation of 5-HT1A receptors, while responses from 5-Htt KO mice suggest that excess levels of extracellular 5-HT, created by the lack of 5-Htt, stimulates 5-HT1A receptors strong enough to overcome desensitisation of these receptors. Second, the whole-cell patch clamp recording data from serotonergic neurons in the DRN showed no differences in basic electrophysiological properties between Tph2 KO and WT mice, except lower membrane resistances of neurons from KO mice. Moreover, the whole-cell patch clamp recording from CA1 pyramidal neurons in the hippocampus of 5-Htt KO mice showed increased conductance both at a steady state and at action potential generation. Lastly, magnitude of long-term potentiation (LTP) induced by the Schaffer collateral/commissural pathway stimulation in the ventral hippocampus showed no differences among Tph2 KO, 5-Htt KO, and WT counterparts. Taken together, lack and excess of extracellular 5-HT caused sensitisation and desensitisation of autoinhibitory 5-HT1A receptors, respectively. However, this may not directly translate to the level of autoinhibitory regulation of serotonergic neuron firing when these receptors are stimulated by endogenously synthesised 5-HT. In general, KO mice studied here showed an astonishing level of resilience to genetic manipulations of the central serotonergic system, maintaining overall electrophysiological properties and normal LTP inducibility. This may further suggest existence of as-yet-unknown compensatory mechanisms buffering potential alterations induced by genetic manipulations.}, subject = {Serotonin}, language = {en} } @article{KarlNandiniColacoSchulteetal.2019, author = {Karl, Franziska and Nandini Cola{\c{c}}o, Maria B. and Schulte, Annemarie and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Affective and cognitive behavior is not altered by chronic constriction injury in B7-H1 deficient and wildtype mice}, series = {BMC Neuroscience}, volume = {20}, journal = {BMC Neuroscience}, doi = {10.1186/s12868-019-0498-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200540}, pages = {16}, year = {2019}, abstract = {Background Chronic neuropathic pain is often associated with anxiety, depressive symptoms, and cognitive impairment with relevant impact on patients` health related quality of life. To investigate the influence of a pro-inflammatory phenotype on affective and cognitive behavior under neuropathic pain conditions, we assessed mice deficient of the B7 homolog 1 (B7-H1), a major inhibitor of inflammatory response. Results Adult B7-H1 ko mice and wildtype littermates (WT) received a chronic constriction injury (CCI) of the sciatic nerve, and we assessed mechanical and thermal sensitivity at selected time points. Both genotypes developed mechanical (p < 0.001) and heat hypersensitivity (p < 0.01) 7, 14, and 20 days after surgery. We performed three tests for anxiety-like behavior: the light-dark box, the elevated plus maze, and the open field. As supported by the results of these tests for anxiety-like behavior, no relevant differences were found between genotypes after CCI. Depression-like behavior was assessed using the forced swim test. Also, CCI had no effect on depression like behavior. For cognitive behavior, we applied the Morris water maze for spatial learning and memory and the novel object recognition test for object recognition, long-, and short-term memory. Learning and memory did not differ in B7-H1 ko and WT mice after CCI. Conclusions Our study reveals that the impact of B7-H1 on affective-, depression-like- and learning-behavior, and memory performance might play a subordinate role in mice after nerve lesion.}, language = {en} } @article{LineBarkusCoyleetal.2011, author = {Line, Samantha J. and Barkus, Christopher and Coyle, Clare and Jennings, Katie A. and Deacon, Robert M. and Lesch, Klaus P. and Sharp, Trevor and Bannerman, David M.}, title = {Opposing alterations in anxiety and species-typical behaviours in serotonin transporter overexpressor and knockout mice}, series = {European Neuropsychopharmacology}, volume = {21}, journal = {European Neuropsychopharmacology}, number = {1}, doi = {10.1016/j.euroneuro.2010.08.005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141222}, pages = {108-116}, year = {2011}, abstract = {Human gene association studies have produced conflicting findings regarding the relationship between the 5-HT transporter (5-HTT) and anxiety. In the present study genetically modified mice were utilised to examine the effects of changes in 5-HTT expression on anxiety. In addition, the influence of 5-HTT expression on two innate "species-typical" behaviours (burrowing and marble burying) and body weight was explored. Across a range of models, 5-HTT overexpressing mice displayed reduced anxiety-like behaviour whilst 5-HTT knockout mice showed increased anxiety-like behaviour, compared to wildtype controls. In tests of species-typical behaviour 5-HTT overexpressing mice showed some facilitation whilst 5-HTT knockout mice were impaired. Reciprocal effects were also seen on body weight, as 5-HTT overexpressors were lighter and 5-HTT knockouts were heavier than wildtype controls. These findings show that variation in 5-HTT gene expression produces robust changes in anxiety and species-typical behaviour. Furthermore, the data add further support to findings that variation of 5-HTT expression in the human population is linked to changes in anxiety-related personality traits.}, language = {en} } @phdthesis{Raab2018, author = {Raab, Annette}, title = {The role of Rgs2 in animal models of affective disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Anxiety and depressive disorders result from a complex interplay of genetic and environmental factors and are common mutual comorbidities. On the level of cellular signaling, regulator of G protein signaling 2 (Rgs2) has been implicated in human and rodent anxiety as well as rodent depression. Rgs2 negatively regulates G protein-coupled receptor (GPCR) signaling by acting as a GTPase accelerating protein towards the Gα subunit. The present study investigates, whether mice with a homozygous Rgs2 deletion (Rgs2-/-) show behavioral alterations as well as an increased susceptibility to stressful life events related to human anxiety and depressive disorders and tries to elucidate molecular underlying's of these changes. To this end, Rgs2-/- mice were characterized in an aversive-associative learning paradigm to evaluate learned fear as a model for the etiology of human anxiety disorders. Spatial learning and reward motivated spatial learning were evaluated to control for learning in non-aversive paradigms. Rgs2 deletion enhanced learning in all three paradigms, rendering increased learning upon deletion of Rgs2 not specific for aversive learning. These data support reports indicating increased long-term potentiation in Rgs2-/- mice and may predict treatment response to conditioning based behavior therapy in patients with polymorphisms associated with reduced RGS2 expression. Previous reports of increased innate anxiety were corroborated in three tests based on the approach-avoidance conflict. Interestingly, Rgs2-/- mice showed novelty-induced hypo-locomotion suggesting neophobia, which may translate to the clinical picture of agoraphobia in humans and reduced RGS2 expression in humans was associated with a higher incidence of panic disorder with agoraphobia. Depression-like behavior was more distinctive in female Rgs2-/- mice. Stress resilience, tested in an acute and a chronic stress paradigm, was also more distinctive in female Rgs2-/- mice, suggesting Rgs2 to contribute to sex specific effects of anxiety disorders and depression. Rgs2 deletion was associated with GPCR expression changes of the adrenergic, serotonergic, dopaminergic and neuropeptide Y systems in the brain and heart as well as reduced monoaminergic neurotransmitter levels. Furthermore, the expression of two stress-related microRNAs was increased upon Rgs2 deletion. The aversive-associative learning paradigm induced a dynamic Rgs2 expression change. The observed molecular changes may contribute to the anxious and depressed phenotype as well as promote altered stress reactivity, while reflecting an alter basal stress level and a disrupted sympathetic tone. Dynamic Rgs2 expression may mediate changes in GPCR signaling duration during memory formation. Taken together, Rgs2 deletion promotes increased anxiety-like and depression-like behavior, altered stress reactivity as well as increased cognitive function.}, subject = {Angst}, language = {en} } @article{WieserReichertsJuravleetal.2016, author = {Wieser, Matthias J. and Reicherts, Philipp and Juravle, Georgiana and von Leupoldt, Andreas}, title = {Attention mechanisms during predictable and unpredictable threat - a steady-state visual evoked potential approach}, series = {NeuroImage}, volume = {139}, journal = {NeuroImage}, doi = {10.1016/j.neuroimage.2016.06.026}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187365}, pages = {167-175}, year = {2016}, abstract = {Fear is elicited by imminent threat and leads to phasic fear responses with selective attention, whereas anxiety is characterized by a sustained state of heightened vigilance due to uncertain danger. In the present study, we investigated attention mechanisms in fear and anxiety by adapting the NPU-threat test to measure steady-state visual evoked potentials (ssVEPs). We investigated ssVEPs across no aversive events (N), predictable aversive events (P), and unpredictable aversive events (U), signaled by four-object arrays (30 s). In addition, central cues were presented during all conditions but predictably signaled imminent threat only during the P condition. Importantly, cues and context events were flickered at different frequencies (15 Hz vs. 20 Hz) in order to disentangle respective electrocortical responses. The onset of the context elicited larger electrocortical responses for U compared to P context. Conversely, P cues elicited larger electrocortical responses compared to N cues. Interestingly, during the presence of the P cue, visuocortical processing of the concurrent context was also enhanced. The results support the notion of enhanced initial hypervigilance to unpredictable compared to predictable threat contexts, while predictable cues show electrocortical enhancement of the cues themselves but additionally a boost of context processing.}, language = {en} }