@article{MaassDuezelBrigadskietal.2016, author = {Maass, Anne and D{\"u}zel, Sandra and Brigadski, Tanja and Goerke, Monique and Becke, Andreas and Sobieray, Uwe and Neumann, Katja and L{\"o}vd{\´e}n, Martin and Lindenberger, Ulman and B{\"a}ckman, Lars and Braun-Dullaeus, R{\"u}diger and Ahrens, D{\"o}rte and Heinze, Hans-Jochen and M{\"u}ller, Notger G. and Lessmann, Volkmar and Sendtner, Michael and D{\"u}zel, Emrah}, title = {Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults}, series = {NeuroImage}, volume = {131}, journal = {NeuroImage}, doi = {10.1016/j.neuroimage.2015.10.084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189219}, pages = {142-154}, year = {2016}, abstract = {Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77 years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n = 21) or to a control group (indoor progressive-muscle relaxation/stretching, n = 19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here.}, language = {en} } @article{SchmittFunkBlumetal.2016, author = {Schmitt, Dominique and Funk, Natalia and Blum, Robert and Asan, Esther and Andersen, Lill and R{\"u}licke, Thomas and Sendtner, Michael and Buchner, Erich}, title = {Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons}, series = {Histochemistry and Cell Biology}, volume = {146}, journal = {Histochemistry and Cell Biology}, number = {4}, doi = {10.1007/s00418-016-1457-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187258}, pages = {489-512}, year = {2016}, abstract = {Synapse-associated protein 1 (Syap1/BSTA) is the mammalian homologue of Sap47 (synapse-associated protein of 47 kDa) in Drosophila. Sap47 null mutant larvae show reduced short-term synaptic plasticity and a defect in associative behavioral plasticity. In cultured adipocytes, Syap1 functions as part of a complex that phosphorylates protein kinase B alpha/Akt1 (Akt1) at Ser\(^{473}\) and promotes differentiation. The role of Syap1 in the vertebrate nervous system is unknown. Here, we generated a Syap1 knock-out mouse and show that lack of Syap1 is compatible with viability and fertility. Adult knock-out mice show no overt defects in brain morphology. In wild-type brain, Syap1 is found widely distributed in synaptic neuropil, notably in regions rich in glutamatergic synapses, but also in perinuclear structures associated with the Golgi apparatus of specific groups of neuronal cell bodies. In cultured motoneurons, Syap1 is located in axons and growth cones and is enriched in a perinuclear region partially overlapping with Golgi markers. We studied in detail the influence of Syap1 knockdown and knockout on structure and development of these cells. Importantly, Syap1 knockout does not affect motoneuron survival or axon growth. Unexpectedly, neither knockdown nor knockout of Syap1 in cultured motoneurons is associated with reduced Ser\(^{473}\) or Thr\(^{308}\) phosphorylation of Akt. Our findings demonstrate a widespread expression of Syap1 in the mouse central nervous system with regionally specific distribution patterns as illustrated in particular for olfactory bulb, hippocampus, and cerebellum.}, language = {en} } @article{SimonRauskolbGunnersenetal.2015, author = {Simon, Christian M. and Rauskolb, Stefanie and Gunnersen, Jennifer M. and Holtmann, Bettina and Drepper, Carsten and Dombert, Benjamin and Braga, Massimiliano and Wiese, Stefan and Jablonka, Sibylle and P{\"u}hringer, Dirk and Zielasek, J{\"u}rgen and Hoeflich, Andreas and Silani, Vincenzo and Wolf, Eckhard and Kneitz, Susanne and Sommer, Claudia and Toyka, Klaus V. and Sendtner, Michael}, title = {Dysregulated IGFBP5 expression causes axon degeneration and motoneuron loss in diabetic neuropathy}, series = {Acta Neuropathologica}, volume = {130}, journal = {Acta Neuropathologica}, doi = {10.1007/s00401-015-1446-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154569}, pages = {373 -- 387}, year = {2015}, abstract = {Diabetic neuropathy (DNP), afflicting sensory and motor nerve fibers, is a major complication in diabetes.The underlying cellular mechanisms of axon degeneration are poorly understood. IGFBP5, an inhibitory binding protein for insulin-like growth factor 1 (IGF1) is highly up-regulated in nerve biopsies of patients with DNP. We investigated the pathogenic relevance of this finding in transgenic mice overexpressing IGFBP5 in motor axons and sensory nerve fibers. These mice develop motor axonopathy and sensory deficits similar to those seen in DNP. Motor axon degeneration was also observed in mice in which the IGF1 receptor(IGF1R) was conditionally depleted in motoneurons, indicating that reduced activity of IGF1 on IGF1R in motoneurons is responsible for the observed effect. These data provide evidence that elevated expression of IGFBP5 in diabetic nerves reduces the availability of IGF1 for IGF1R on motor axons, thus leading to progressive neurodegeneration. Inhibition of IGFBP5 could thus offer novel treatment strategies for DNP.}, language = {en} } @phdthesis{Wetzel2013, author = {Wetzel, Andrea}, title = {The role of TrkB and NaV1.9 in activity-dependent axon growth in motoneurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-92877}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {W{\"a}hrend der Entwicklung des Nervensystems lassen sich bei Motoneuronen aktivit{\"a}tsabh{\"a}ngige Kalziumstr{\"o}me eobachten, die das Axonwachstum regulieren. Diese Form der neuronalen Spontanaktivit{\"a}t sowie das Auswachsen von Axonen sind bei Motoneuronen, die aus Tiermodellen der Spinalen Muskelatrophie isoliert werden, gest{\"o}rt. Experimente aus unserer Arbeitsgruppe haben gezeigt, dass spontane Erregbarkeit und aktivit{\"a}tsabh{\"a}ngiges Axonwachstum von kultivierten Motoneuronen auch unter Verwendung von Toxinen beeintr{\"a}chtigt sind, welche die Aktivit{\"a}t von spannungsabh{\"a}ngigen Natriumkan{\"a}len blockieren. In diesen Versuchen war die Wirkung von Saxitoxin effizienter als die Wirkung von Tetrodotoxin. Wir identifizierten den Saxitoxin-sensitiven/Tetrodotoxin-insensitiven spannungsabh{\"a}ngigen Natriumkanal NaV1.9 als Trigger f{\"u}r das {\"O}ffnen spannungsabh{\"a}ngiger Kalziumkan{\"a}le. Die Expression von NaV1.9 in Motoneuronen konnte {\"u}ber quantitative RT-PCR nachgewiesen werden und antik{\"o}rperf{\"a}rbungen offenbarten eine Anreicherung des Kanals im axonalen Wachstumskegel sowie an Ranvier'schen Schn{\"u}rringen von isolierten Nervenfasern wildtypischer M{\"a}use. Motoneurone von NaV1.9 knock-out M{\"a}usen zeigen reduzierte Spontanaktivit{\"a}t und eine Reduktion des Axonwachstums, welche durch NaV1.9 {\"U}berexpression normalisiert werden kann. In Motoneuronen von Smn-defizienten M{\"a}usen konnte keine Abweichung der NaV1.9 Proteinverteilung nachgewiesen werden. K{\"u}rzlich wurden Patienten identifiziert, die eine missense-Mutation im NaV1.9 kodierenden SCN11A Gen tragen. Diese Patienten k{\"o}nnen keinerlei Schmerz empfinden und leiden zudem an Muskelschw{\"a}che in Kombination mit einer verz{\"o}gerten motorischen Entwicklung. Im Rahmen dieser Doktorarbeit konnten molekularbiologische Untersuchungen an M{\"a}usen, welche die Mutation im orthologen Scn11a Gen tragen, zur Aufkl{\"a}rung des Krankheitsmechanismus beitragen. Die Kooperationsstudie zeigte, dass eine gesteigerte Funktion von NaV1.9 diese spezifische Kanalerkrankung ausl{\"o}st, was die Wichtigkeit von NaV1.9 in menschlichen Motoneuronen unterstreicht. Eine fr{\"u}here Studie beschrieb an hippocampalen Neuronen, dass die Rezeptortyrosinkinase tropomyosin receptor kinase B (TrkB) den NaV1.9 Kanal {\"o}ffnen kann. Im Wachstumskegel von Motoneuronen ist TrkB nachweisbar und folglich in r{\"a}umlicher N{\"a}he zu NaV1.9 zu finden. Um zu pr{\"u}fen, ob TrkB in die spontane Erregbarkeit von Motoneuronen involviert ist, wurden TrkB knock-out M{\"a}use untersucht. Isolierte Motoneurone von TrkB knock-out M{\"a}usen weisen eine Reduktion der Spontanaktivit{\"a}t und eine Verringerung des Axonwachstums auf. Ob TrkB und NaV1.9 hierbei funktionell gekoppelt sind, ist Gegenstand k{\"u}nftiger Forschung.}, subject = {Motoneuron}, language = {en} }