@phdthesis{Schnells2019, author = {Schnells, Vera}, title = {Fractional Insulators and their Parent Hamiltonians}, doi = {10.25972/OPUS-18561}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In the past few years, two-dimensional quantum liquids with fractional excitations have been a topic of high interest due to their possible application in the emerging field of quantum computation and cryptography. This thesis is devoted to a deeper understanding of known and new fractional quantum Hall states and their stabilization in local models. We pursue two different paths, namely chiral spin liquids and fractionally quantized, topological phases. The chiral spin liquid is one of the few examples of spin liquids with fractional statistics. Despite its numerous promising properties, the microscopic models for this state proposed so far are all based on non-local interactions, making the experimental realization challenging. In the first part of this thesis, we present the first local parent Hamiltonians, for which the Abelian and non-Abelian chiral spin liquids are the exact and, modulo a topological degeneracy, unique ground states. We have developed a systematic approach to find an annihilation operator of the chiral spin liquid and construct from it a many-body interaction which establishes locality. For various system sizes and lattice geometries, we numerically find largely gapped eigenspectra and confirm to an accuracy of machine precision the uniqueness of the chiral spin liquid as ground state of the respective system. Our results provide an exact spin model in which fractional quantization can be studied. Topological insulators are one of the most actively studied topics in current condensed matter physics research. With the discovery of the topological insulator, one question emerged: Is there an interaction-driven set of fractionalized phases with time reversal symmetry? One intuitive approach to the theoretical construction of such a fractional topological insulator is to take the direct product of a fractional quantum Hall state and its time reversal conjugate. However, such states are well studied conceptually and do not lead to new physics, as the idea of taking a state and its mirror image together without any entanglement between the states has been well understood in the context of topological insulators. Therefore, the community has been looking for ways to implement some topological interlocking between different spin species. Yet, for all practical purposes so far, time reversal symmetry has appeared to limit the set of possible fractional states to those with no interlocking between the two spin species. In the second part of this thesis, we propose a new universality class of fractionally quantized, topologically ordered insulators, which we name "fractional insulator". Inspired by the fractional quantum Hall effect, spin liquids, and fractional Chern insulators, we develop a wave function approach to a new class of topological order in a two-dimensional crystal of spin-orbit coupled electrons. The idea is simply to allow the topological order to violate time reversal symmetry, while all locally observable quantities remain time reversal invariant. We refer to this situation as "topological time reversal symmetry breaking". Our state is based on the Halperin double layer states and can be viewed as a two-layer system of an ↑-spin and a ↓-spin sphere. The construction starts off with Laughlin states for the ↑-spin and ↓-spin electrons and an interflavor term, which creates correlations between the two layers. With a careful parameter choice, we obtain a state preserving time reversal symmetry locally, and label it the "311-state". For systems of up to six ↑-spin and six ↓-spin electrons, we manage to construct an approximate parent Hamiltonian with a physically realistic, local interaction.}, subject = {Spinfl{\"u}ssigkeit}, language = {en} } @phdthesis{Siddiki2005, author = {Siddiki, Afif}, title = {Model calculations of current and density distributions in dissipative Hall bars}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15100}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In this work we examine within the self-consistent Thomas-Fermi-Poisson approach the low-temperature screening properties of a two-dimensional electron gas (2DEG) subjected to strong perpendicular magnetic fields. In chapter 3, numerical results for the unconfined 2DEG are compared with those for a simplified Hall-bar geometry realized by two different confinement models. It is shown that in the strongly nonlinear-screening limit of zero temperature the total variation of the screened potential is related by simple analytical expressions to the amplitude of an applied harmonic modulation potential and to the strength of the magnetic field. In chapter 4 we study the current and charge distribution in a two-dimensional electron system, under the conditions of the integer quantized Hall effect, on the basis of a quasilocal transport model, that includes nonlinear screening effects on the conductivity via the self-consistently calculated density profile. The existence of "incompressible strips" with integer Landau level filling factor is investigated within a Hartree-type approximation, and nonlocal effects on the conductivity along those strips are simulated by a suitable averaging procedure. This allows us to calculate the Hall and the longitudinal resistance as continuous functions of the magnetic field B, with plateaus of finite widths and the well-known, exactly quantized values. We emphasize the close relation between these plateaus and the existence of incompressible strips, and we show that for B values within these plateaus the potential variation across the Hall bar is very different from that for B values between adjacent plateaus, in agreement with recent experiments. We have improved on the previous chapter by a critical investigation of the impurity potential profiles and obtained reasonable estimates of the range and the amplitude of the potential fluctuations. We added a harmonic perturbation potential to the confining potential in order to generate the long-range-part of the overall impurity potential in the translation invariant model. This treatment of the long-range fluctuations allowed us to resolve apparent discrepancies such as the dependence of the QH plateau width on the mobility and to understand the crossing values of the high and low temperature Hall resistances. An interesting outcome of this model is that, it predicts different crossing values depending on the sample width and mobility. In chapter 6 we brie y report on theoretical and experimental investigations of a novel hysteresis effect that has been observed on the magneto-resistance (MR) of quantum-Hall (QH) bilayer systems in magnetic field (B) intervals, in which one layer is in a QH-plateau while the other is near an edge of a QH-plateau. We extend a recent approach to the QH effect, based on the Thomas-Fermi-Poisson theory and a local conductivity model to the bilayer system. This approach yields very different density and potential landscapes for the B-values at different edges of a QH plateau. Combining this with the knowledge about extremely long relaxation times to the thermodynamic equilibrium within the plateau regime, we simulate the hysteresis in the "active" current-carrying layer by freezing-in the electron density in the other, "passive", layer at the profile corresponding to the low-B edge of its QH plateau as B is swept up, and to the profile at the high-B edge as B is swept down. The calculated MR hysteresis is in good qualitative agreement with the experiment. If we use the equilibrium density profile, we obtain excellent agreement with an "equilibrium" measurement, in which the system was heated up to ~ 10K and cooled down again at each sweep step.}, subject = {Elektronengas}, language = {en} }