@phdthesis{Alrefai2014, author = {Alrefai, Hani Gouda Alsaid}, title = {Molecular Characterization of NFAT Transcription Factors in Experimental Mouse Models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97905}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work we wanted to investigate the role of NFATc1 in lymphocyte physiology and in pathological conditions (eg. psoriasis). NFATc1 is part of the signal transduction pathways that regulates B cells activation and function. NFATc1 has different isoforms that are due to different promoters (P1 and P2), polyadenylation and alternative splicing. Moreover, we tried to elucidate the points of interactions between the NFAT and the NF-κB pathways in activated B-cell fate. NFAT and NF-κB factors share several properties, such as a similar mode of induction and architecture in their DNA binding domain. We used mice which over-express a constitutive active version of NFATc1/α in their B cells with -or without- an ablated IRF4. IRF4 inhibits cell cycle progression of germinal center B cell-derived Burkitt's lymphoma cells and induces terminal differentiation toward plasma cells. Our experiments showed that a 'double hit' in factors affecting B cell activation (NFATc1 in this case) and late B cell Differentiation (IRF4 in this case) alter the development of the B cells, lead to increase in their numbers and increase in stimulation induced proliferation. Therefore, the overall picture indicates a link between these 2 genes and probable carcinogenic alterations that may occur in B cells. We also show that in splenic B cells, c-Rel (of the NF-κB canonical pathway) Support the induction of NFATc1/αA through BCR signals. We also found evidence that the lack of NFATc1 affects the expression of Rel-B (of the NF-κB non-canonical pathway). These data suggest a tight interplay between NFATc1 and NF-κB in B cells, influencing the competence of B cells and their functions in peripheral tissues. We also used IMQ-induced psoriasis-like inflammation on mice which either lack NFATc1 from B cell. Psoriasis is a systemic chronic immunological disease characterized primarily by abnormal accelerated proliferation of the skin keratinocytes. In psoriasis, the precipitating event leads to immune cell activation. Our experiments showed that NFATc1 is needed for the development of psoriasis. It also showed that IL-10 is the link that enables NFAT from altering the B cell compartment (eg Bregs) in order to affect inflammation. The important role of B cell in psoriasis is supported by the flared up psoriasis-like inflammation in mice that lack B cells. Bregs is a special type of B cells that regulate other B cells and T cells; tuning the immunological response through immunomodulatory cytokines.}, subject = {Schuppenflechte}, language = {en} } @article{LineBarkusCoyleetal.2011, author = {Line, Samantha J. and Barkus, Christopher and Coyle, Clare and Jennings, Katie A. and Deacon, Robert M. and Lesch, Klaus P. and Sharp, Trevor and Bannerman, David M.}, title = {Opposing alterations in anxiety and species-typical behaviours in serotonin transporter overexpressor and knockout mice}, series = {European Neuropsychopharmacology}, volume = {21}, journal = {European Neuropsychopharmacology}, number = {1}, doi = {10.1016/j.euroneuro.2010.08.005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141222}, pages = {108-116}, year = {2011}, abstract = {Human gene association studies have produced conflicting findings regarding the relationship between the 5-HT transporter (5-HTT) and anxiety. In the present study genetically modified mice were utilised to examine the effects of changes in 5-HTT expression on anxiety. In addition, the influence of 5-HTT expression on two innate "species-typical" behaviours (burrowing and marble burying) and body weight was explored. Across a range of models, 5-HTT overexpressing mice displayed reduced anxiety-like behaviour whilst 5-HTT knockout mice showed increased anxiety-like behaviour, compared to wildtype controls. In tests of species-typical behaviour 5-HTT overexpressing mice showed some facilitation whilst 5-HTT knockout mice were impaired. Reciprocal effects were also seen on body weight, as 5-HTT overexpressors were lighter and 5-HTT knockouts were heavier than wildtype controls. These findings show that variation in 5-HTT gene expression produces robust changes in anxiety and species-typical behaviour. Furthermore, the data add further support to findings that variation of 5-HTT expression in the human population is linked to changes in anxiety-related personality traits.}, language = {en} } @article{YadavSelvarajBenderetal.2016, author = {Yadav, Preeti and Selvaraj, Bhuvaneish T. and Bender, Florian L. P. and Behringer, Marcus and Moradi, Mehri and Sivadasan, Rajeeve and Dombert, Benjamin and Blum, Robert and Asan, Esther and Sauer, Markus and Julien, Jean-Pierre and Sendtner, Michael}, title = {Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling}, series = {Acta Neuropathologica}, volume = {132}, journal = {Acta Neuropathologica}, number = {1}, doi = {10.1007/s00401-016-1564-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188234}, pages = {93-110}, year = {2016}, abstract = {In neurons, microtubules form a dense array within axons, and the stability and function of this microtubule network is modulated by neurofilaments. Accumulation of neurofilaments has been observed in several forms of neurodegenerative diseases, but the mechanisms how elevated neurofilament levels destabilize axons are unknown so far. Here, we show that increased neurofilament expression in motor nerves of pmn mutant mice, a model of motoneuron disease, causes disturbed microtubule dynamics. The disease is caused by a point mutation in the tubulin-specific chaperone E (Tbce) gene, leading to an exchange of the most C-terminal amino acid tryptophan to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal microtubules and defects in axonal transport, in particular in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant motoneurons and restores axon elongation. This effect is mediated by interaction of neurofilament with the stathmin complex. Accumulating neurofilaments associate with stathmin in axons of pmn mutant motoneurons. Depletion of neurofilament by Nefl knockout increases Stat3-stathmin interaction and stabilizes the microtubules in pmn mutant motoneurons. Consequently, counteracting enhanced neurofilament expression improves axonal maintenance and prolongs survival of pmn mutant mice. We propose that this mechanism could also be relevant for other neurodegenerative diseases in which neurofilament accumulation and loss of microtubules are prominent features.}, language = {en} }