@phdthesis{Aufmkolk2018, author = {Aufmkolk, Sarah}, title = {Super-Resolution Microscopy of Synaptic Proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151976}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {X, 97}, year = {2018}, abstract = {The interaction of synaptic proteins orchestrate the function of one of the most complex organs, the brain. The multitude of molecular elements influencing neurological correlations makes imaging processes complicated since conventional fluorescence microscopy methods are unable to resolve structures beyond the diffraction-limit. The implementation of super-resolution fluorescence microscopy into the field of neuroscience allows the visualisation of the fine details of neural connectivity. The key element of my thesis is the super-resolution technique dSTORM (direct Stochastic Optical Reconstruction Microscopy) and its optimisation as a multi-colour approach. Capturing more than one target, I aim to unravel the distribution of synaptic proteins with nanometer precision and set them into a structural and quantitative context with one another. Therefore dSTORM specific protocols are optimized to serve the peculiarities of particular neural samples. In one project the brain derived neurotrophic factor (BDNF) is investigated in primary, hippocampal neurons. With a precision beyond 15 nm, preand post-synaptic sites can be identified by staining the active zone proteins bassoon and homer. As a result, hallmarks of mature synapses can be exhibited. The single molecule sensitivity of dSTORM enables the measurement of endogenous BDNF and locates BDNF granules aligned with glutamatergic pre-synapses. This data proofs that hippocampal neurons are capable of enriching BDNF within the mature glutamatergic pre-synapse, possibly influencing synaptic plasticity. The distribution of the metabotropic glutamate receptor mGlu4 is investigated in physiological brain slices enabling the analysis of the receptor in its natural environment. With dual-colour dSTORM, the spatial arrangement of the mGlu4 receptor in the pre-synaptic sites of parallel fibres in the molecular layer of the mouse cerebellum is visualized, as well as a four to six-fold increase in the density of the receptor in the active zone compared to the nearby environment. Prior functional measurements show that metabotropic glutamate receptors influence voltage-gated calcium channels and proteins that are involved in synaptic vesicle priming. Corresponding dSTORM data indeed suggests that a subset of the mGlu4 receptor is correlated with the voltage-gated calcium channel Cav2.1 on distances around 60 nm. These results are based on the improvement of the direct analysis of localisation data. Tools like coordinated based correlation analysis and nearest neighbour analysis of clusters centroids are used complementary to map protein connections of the synapse. Limits and possible improvements of these tools are discussed to foster the quantitative analysis of single molecule localisation microscopy data. Performing super-resolution microscopy on complex samples like brain slices benefits from a maximised field of view in combination with the visualisation of more than two targets to set the protein of interest in a cellular context. This challenge served as a motivation to establish a workflow for correlated structured illumination microscopy (SIM) and dSTORM. The development of the visualisation software coSIdSTORM promotes the combination of these powerful super-resolution techniques even on separated setups. As an example, synapses in the cerebellum that are affiliated to the parallel fibres and the dendrites of the Purkinje cells are identified by SIM and the protein bassoon of those pre-synapses is visualised threedimensionally with nanoscopic precision by dSTORM. In this work I placed emphasis on the improvement of multi-colour super-resolution imaging and its analysing tools to enable the investigation of synaptic proteins. The unravelling of the structural arrangement of investigated proteins supports the building of a synapse model and therefore helps to understand the relation between structure and function in neural transmission processes.}, subject = {Hochaufl{\"o}sende Mikroskopie}, language = {en} } @article{BanKaračićTomićetal.2021, author = {Ban, Željka and Karačić, Zrinka and Tomić, Sanja and Amini, Hashem and Marder, Todd B. and Piantanida, Ivo}, title = {Triarylborane dyes as a novel non-covalent and non-inhibitive fluorimetric markers for DPP III enzyme}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {16}, issn = {1420-3049}, doi = {10.3390/molecules26164816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245046}, year = {2021}, abstract = {Novel dyes were prepared by simple "click CuAAC" attachment of a triarylborane-alkyne to the azide side chain of an amino acid yielding triarylborane dye 1 which was conjugated with pyrene (dye 2) forming a triarylborane-pyrene FRET pair. In contrast to previous cationic triarylboranes, the novel neutral dyes interact only with proteins, while their affinity to DNA/RNA is completely abolished. Both the reference triarylborane amino acid and triarylborane-pyrene conjugate bind to BSA and the hDPP III enzyme with high affinities, exhibiting a strong (up to 100-fold) fluorescence increase, whereby the triarylborane-pyrene conjugate additionally retained FRET upon binding to the protein. Furthermore, the triarylborane dyes, upon binding to the hDPP III enzyme, did not impair its enzymatic activity under a wide range of experimental conditions, thus being the first non-covalent fluorimetric markers for hDPP III, also applicable during enzymatic reactions with hDPP III substrates.}, language = {en} } @article{BossertdeBruinGoetzetal.2016, author = {Bossert, Nelli and de Bruin, Donny and G{\"o}tz, Maria and Bouwmeester, Dirk and Heinrich, Doris}, title = {Fluorescence-tunable Ag-DNA biosensor with tailored cytotoxicity for live-cell applications}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {37897}, doi = {10.1038/srep37897}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167482}, year = {2016}, abstract = {DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.}, language = {en} } @article{DietzHasseFerrarisetal.2013, author = {Dietz, Mariana S. and Hasse, Daniel and Ferraris, Davide M. and G{\"o}hler, Antonia and Niemann, Hartmut H. and Heilemann, Mike}, title = {Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells}, series = {BMC Biophysics}, volume = {6}, journal = {BMC Biophysics}, number = {6}, issn = {2046-1682}, doi = {10.1186/2046-1682-6-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121835}, year = {2013}, abstract = {Background: The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. Results: To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Conclusions: Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases.}, language = {en} } @article{FosterEdkinsCameronetal.2014, author = {Foster, Jonathan A. and Edkins, Robert M. and Cameron, Gary J. and Colgin, Neil and Fucke, Katharina and Ridgeway, Sam and Crawford, Andrew G. and Marder, Todd B. and Beeby, Andrew and Cobb, Steven L. and Steed, Jonathan W.}, title = {Blending Gelators to Tune Gel Structure and Probe Anion-Induced Disassembly}, series = {Chemistry : A European Journal}, volume = {20}, journal = {Chemistry : A European Journal}, doi = {10.1002/chem.201303153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121141}, pages = {279-91}, year = {2014}, abstract = {Blending different low molecular weight gelators (LMWGs) provides a convenient route to tune the properties of a gel and incorporate functionalities such as fluorescence. Blending a series of gelators having a common bis-urea motif, and functionalised with different amino acid-derived end-groups and differing length alkylene spacers is reported. Fluorescent gelators incorporating 1- and 2-pyrenyl moieties provide a probe of the mixed systems alongside structural and morphological data from powder diffraction and electron microscopy. Characterisation of the individual gelators reveals that although the expected α-urea tape motif is preserved, there is considerable variation in the gelation properties, molecular packing, fibre morphology and rheological behaviour. Mixing of the gelators revealed examples in which: 1) the gels formed separate, orthogonal networks maintaining their own packing and morphology, 2) the gels blended together into a single network, either adopting the packing and morphology of one gelator, or 3) a new structure not seen for either of the gelators individually was created. The strong binding of the urea functionalities to anions was exploited as a means of breaking down the gel structure, and the use of fluorescent gel blends provides new insights into anion-mediated gel dissolution.}, language = {en} } @article{FullWoelflickRadackietal.2022, author = {Full, Felix and W{\"o}lflick, Quentin and Radacki, Krzysztof and Braunschweig, Holger and Nowak-Kr{\´o}l, Agnieszka}, title = {Enhanced Optical Properties of Azaborole Helicenes by Lateral and Helical Extension}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {62}, doi = {10.1002/chem.202202280}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293671}, year = {2022}, abstract = {The synthesis and characterization of laterally extended azabora[5]-, -[6]- and -[7]helicenes, assembled from N-heteroaromatic and dibenzo[g,p]chrysene building blocks is described. Formally, the π-conjugated systems of the pristine azaborole helicenes were enlarged with a phenanthrene unit leading to compounds with large Stokes shifts, significantly enhanced luminescence quantum yields (Φ) and dissymmetry factors (g\(_{lum}\)). The beneficial effect on optical properties was also observed for helical elongation. The combined contributions of lateral and helical extensions resulted in a compound showing green emission with Φ of 0.31 and |g\(_{lum}\)| of 2.2×10\(^{-3}\), highest within the series of π-extended azaborahelicenes and superior to emission intensity and chiroptical response of its non-extended congener. This study shows that helical and lateral extensions of π-conjugated systems are viable strategies to improve features of azaborole helicenes. In addition, single crystal X-ray analysis of configurationally stable [6]- and -[7]helicenes was used to provide insight into their packing arrangements.}, language = {en} } @article{FullPanchalGoetzetal.2021, author = {Full, Julian and Panchal, Santosh P. and G{\"o}tz, Julian and Krause, Ana-Maria and Nowak-Kr{\´o}l, Agnieszka}, title = {Modular Synthesis of Organoboron Helically Chiral Compounds: Cutouts from Extended Helices}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {8}, doi = {10.1002/anie.202014138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225775}, pages = {4350 -- 4357}, year = {2021}, abstract = {Two types of helically chiral compounds bearing one and two boron atoms were synthesized by a modular approach. Formation of the helical scaffolds was executed by the introduction of boron to flexible biaryl and triaryl derived from small achiral building blocks. All-ortho-fused azabora[7]helicenes feature exceptional configurational stability, blue or green fluorescence with quantum yields (Φ\(_{fl}\)) of 18-24 \% in solution, green or yellow solid-state emission (Φ\(_{fl}\) up to 23 \%), and strong chiroptical response with large dissymmetry factors of up to 1.12×10\(^{-2}\). Azabora[9]helicenes consisting of angularly and linearly fused rings are blue emitters exhibiting Φ\(_{fl}\) of up to 47 \% in CH\(_{2}\)Cl\(_{2}\) and 25 \% in the solid state. As revealed by the DFT calculations, their P-M interconversion pathway is more complex than that of H1. Single-crystal X-ray analysis shows clear differences in the packing arrangement of methyl and phenyl derivatives. These molecules are proposed as primary structures of extended helices.}, language = {en} } @article{GmachBathePetersTeluguetal.2022, author = {Gmach, Philipp and Bathe-Peters, Marc and Telugu, Narasimha and Miller, Duncan C. and Annibale, Paolo}, title = {Fluorescence spectroscopy of low-level endogenous β-adrenergic receptor expression at the plasma membrane of differentiating human iPSC-derived cardiomyocytes}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms231810405}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288277}, year = {2022}, abstract = {The potential of human-induced pluripotent stem cells (hiPSCs) to be differentiated into cardiomyocytes (CMs) mimicking adult CMs functional morphology, marker genes and signaling characteristics has been investigated since over a decade. The evolution of the membrane localization of CM-specific G protein-coupled receptors throughout differentiation has received, however, only limited attention to date. We employ here advanced fluorescent spectroscopy, namely linescan Fluorescence Correlation Spectroscopy (FCS), to observe how the plasma membrane abundance of the β\(_1\)- and β\(_2\)-adrenergic receptors (β\(_{1/2}\)-ARs), labelled using a bright and photostable fluorescent antagonist, evolves during the long-term monolayer culture of hiPSC-derived CMs. We compare it to the kinetics of observed mRNA levels in wildtype (WT) hiPSCs and in two CRISPR/Cas9 knock-in clones. We conduct these observations against the backdrop of our recent report of cell-to-cell expression variability, as well as of the subcellular localization heterogeneity of β-ARs in adult CMs.}, language = {en} } @phdthesis{Griesbeck2020, author = {Griesbeck, Stefanie Ingrid}, title = {A Very Positive Image of Boron: Triarylborane Chromophores for Live Cell Imaging}, doi = {10.25972/OPUS-17992}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179921}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Efficient quadrupolar chromophores (A-pi-A) with triarylborane moieties as acceptors have been studied by the Marder group regarding their non-linear optical properties and two-photon absorption ability for many years. Within the present work, this class of dyes found applications in live-cell imaging. Therefore, the dyes need to be water-soluble and water-stable in diluted aqueous solutions, which was examined in Chapter 2. Furthermore, the influence of the pi-bridge on absorption and emission maxima, fluorescence quantum yields and especially the two-photon absorption properties of the chromophores was investigated in Chapter 3. In Chapter 4, a different strategy for the design of efficient two-photon excited fluorescence imaging dyes was explored using dipoles (D-A) and octupoles (DA3). Finding the optimum balance between water-stability and pi-conjugation and, therefore, red-shifted absorption and emission and high fluorescence quantum yields, was investigated in Chapter 5}, subject = {Borane}, language = {en} } @article{GriesbeckMichailRauchetal.2019, author = {Griesbeck, Stefanie and Michail, Evripidis and Rauch, Florian and Ogasawara, Hiroaki and Wang, Chenguang and Sato, Yoshikatsu and Edkins, Robert M. and Zhang, Zuolun and Taki, Masayasu and Lambert, Christoph and Yamaguchi, Shigehiro and Marder, Todd B.}, title = {The Effect of Branching on the One- and Two-Photon Absorption, Cell Viability, and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.201902461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212887}, pages = {13164 -- 13175}, year = {2019}, abstract = {Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.}, language = {en} }