@article{ArndtHoffackerZellmeretal.2014, author = {Arndt, Andreas and Hoffacker, Peter and Zellmer, Konstantin and Goecer, Oktay and Recks, Mascha S. and Kuerten, Stefanie}, title = {Conventional Housing Conditions Attenuate the Development of Experimental Autoimmune Encephalomyelitis}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0099794}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119603}, pages = {e99794}, year = {2014}, abstract = {BACKGROUND: The etiology of multiple sclerosis (MS) has remained unclear, but a causative contribution of factors outside the central nervous system (CNS) is conceivable. It was recently suggested that gut bacteria trigger the activation of CNS-reactive T cells and the development of demyelinative disease. METHODS: C57BL/6 (B6) mice were kept either under specific pathogen free or conventional housing conditions, immunized with the myelin basic protein (MBP)-proteolipid protein (PLP) fusion protein MP4 and the development of EAE was clinically monitored. The germinal center size of the Peyer's patches was determined by immunohistochemistry in addition to the level of total IgG secretion which was assessed by ELISPOT. ELISPOT assays were also used to measure MP4-specific T cell and B cell responses in the Peyer's patches and the spleen. Ear swelling assays were performed to determine the extent of delayed-type hypersensitivity reactions in specific pathogen free and conventionally housed mice. RESULTS: In B6 mice that were actively immunized with MP4 and kept under conventional housing conditions clinical disease was significantly attenuated compared to specific pathogen free mice. Conventionally housed mice displayed increased levels of IgG secretion in the Peyer's patches, while the germinal center formation in the gut and the MP4-specific TH17 response in the spleen were diminished after immunization. Accordingly, these mice displayed an attenuated delayed type hypersensitivity (DTH) reaction in ear swelling assays. CONCLUSIONS: The data corroborate the notion that housing conditions play a substantial role in the induction of murine EAE and suggest that the presence of gut bacteria might be associated with a decreased immune response to antigens of lower affinity. This concept could be of importance for MS and calls for caution when considering the therapeutic approach to treat patients with antibiotics."}, language = {en} } @article{BailNotzRovitusoetal.2017, author = {Bail, Kathrin and Notz, Quirin and Rovituso, Damiano M. and Schampel, Andrea and Wunsch, Marie and Koeniger, Tobias and Schropp, Verena and Bharti, Richa and Scholz, Claus-Juergen and Foerstner, Konrad U. and Kleinschnitz, Christoph and Kuerten, Stefanie}, title = {Differential effects of FTY720 on the B cell compartment in a mouse model of multiple sclerosis.}, series = {Journal of Neuroinflammation}, volume = {14}, journal = {Journal of Neuroinflammation}, number = {148}, doi = {10.1186/s12974-017-0924-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157869}, year = {2017}, abstract = {Background: MP4-induced experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS), which enables targeted research on B cells, currently much discussed protagonists in MS pathogenesis. Here, we used this model to study the impact of the S1P1 receptor modulator FTY720 (fingolimod) on the autoreactive B cell and antibody response both in the periphery and the central nervous system (CNS). Methods: MP4-immunized mice were treated orally with FTY720 for 30 days at the peak of disease or 50 days after EAE onset. The subsequent disease course was monitored and the MP4-specific B cell/antibody response was measured by ELISPOT and ELISA. RNA sequencing was performed to determine any effects on B cell-relevant gene expression. S1P\(_{1}\) receptor expression by peripheral T and B cells, B cell subset distribution in the spleen and B cell infiltration into the CNS were studied by flow cytometry. The formation of B cell aggregates and of tertiary lymphoid organs (TLOs) was evaluated by histology and immunohistochemistry. Potential direct effects of FTY720 on B cell aggregation were studied in vitro. Results: FTY720 significantly attenuated clinical EAE when treatment was initiated at the peak of EAE. While there was a significant reduction in the number of T cells in the blood after FTY720 treatment, B cells were only slightly diminished. Yet, there was evidence for the modulation of B cell receptor-mediated signaling upon FTY720 treatment. In addition, we detected a significant increase in the percentage of B220\(^{+}\) B cells in the spleen both in acute and chronic EAE. Whereas acute treatment completely abrogated B cell aggregate formation in the CNS, the numbers of infiltrating B cells and plasma cells were comparable between vehicle- and FTY720-treated mice. In addition, there was no effect on already developed aggregates in chronic EAE. In vitro B cell aggregation assays suggested the absence of a direct effect of FTY720 on B cell aggregation. However, FTY720 impacted the evolution of B cell aggregates into TLOs. Conclusions: The data suggest differential effects of FTY720 on the B cell compartment in MP4-induced EAE.}, language = {en} } @article{BittnerBobakHofmannetal.2015, author = {Bittner, Stefan and Bobak, Nicole and Hofmann, Majella-Sophie and Schuhmann, Michael K. and Ruck, Tobias and G{\"o}bel, Kerstin and Br{\"u}ck, Wolfgang and Wiendl, Heinz and Meuth, Sven G.}, title = {Murine K\(_{2P}\)5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K\(_{2P}\)3.1-and K\(_{V}\)1.3-Dependent Mechanisms}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160816880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151454}, pages = {16880 -- 16896}, year = {2015}, abstract = {Lymphocytes express potassium channels that regulate physiological cell functions, such as activation, proliferation and migration. Expression levels of K\(_{2P}\)5.1(TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels have previously been correlated to the activity of autoreactive T lymphocytes in patients with multiple sclerosis and rheumatoid arthritis. In humans, K\(_{2P}\)5.1 channels are upregulated upon T cell stimulation and influence T cell effector functions. However, a further clinical translation of targeting K\(_{2P}\)5.1 is currently hampered by a lack of highly selective inhibitors, making it necessary to evaluate the impact of KCNK5 in established preclinical animal disease models. We here demonstrate that K\(_{2P}\)5.1 knockout (K\(_{2P}\)5.1\(^{-/-}\) mice display no significant alterations concerning T cell cytokine production, proliferation rates, surface marker molecules or signaling pathways. In an experimental model of autoimmune neuroinflammation, K\(_{2P}\)5.1\(^{-/-}\) mice show a comparable disease course to wild-type animals and no major changes in the peripheral immune system or CNS compartment. A compensatory upregulation of the potassium channels K\(_{2P}\)3.1 and K\(_{V}\)1.3 seems to counterbalance the deletion of K\(_{2P}\)5.1. As an alternative model mimicking autoimmune neuroinflammation, experimental autoimmune encephalomyelitis in the common marmoset has been proposed, especially for testing the efficacy of new potential drugs. Initial experiments show that K\(_{2P}\)5.1 is functionally expressed on marmoset T lymphocytes, opening up the possibility for assessing future K\(_{2P}\)5.1-targeting drugs.}, language = {en} } @article{ButtmannSeuffertMaederetal.2016, author = {Buttmann, Mathias and Seuffert, Linda and M{\"a}der, Uwe and Toyka, Klaus V.}, title = {Malignancies after mitoxantrone for multiple sclerosis: a retrospective cohort study}, series = {Neurology}, volume = {86}, journal = {Neurology}, doi = {10.1212/WNL.0000000000002745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188300}, pages = {2203-2207}, year = {2016}, abstract = {Objective: To assess the therapy-related risk of malignancies in mitoxantrone-treated patients with multiple sclerosis. Methods: This retrospective observational cohort study included all mitoxantrone-treated patients with multiple sclerosis seen at our department between 1994 and 2007. We collected follow-up information on medically confirmed malignancies, life status, and cause of death, as of 2010. Malignancy rates were compared to the German national cancer registry matched for sex, age, and year of occurrence. Results: Follow-up was completed in 676 of 677 identified patients. Median follow-up time was 8.7 years (interquartile range 6.8-11.2), corresponding to 6,220 person-years. Median cumulative mitoxantrone dose was 79.0 mg/m(2) (interquartile range 50.8-102.4). Thirty-seven patients (5.5\%) were diagnosed with a malignancy after mitoxantrone initiation, revealing a standardized incidence ratio of 1.50 (95\% confidence interval CI] 1.05-2.08). Entities included breast cancer (n = 9), colorectal cancer (n = 7), acute myeloid leukemia (n = 4, 0.6\%), and others (each entity n = 1 or 2). The standardized incidence ratio of colorectal cancer was 2.98 (95\% CI 1.20-6.14) and of acute myeloid leukemia 10.44 (95\% CI 3.39-24.36). It was not increased for other entities including breast cancer. Multivariate Cox regression identified higher age at treatment initiation but neither cumulative mitoxantrone dose (>75 vs 75 mg/m(2)) nor treatment with other immunosuppressive drugs or sex as a risk factor. Fifty-five patients had died, among them 12 of a malignancy and 43 reportedly of other causes. Conclusions: While the overall incidence of malignancies was only mildly increased, the risk of leukemia and colorectal cancer was heightened. If confirmed, posttherapy colonoscopy could become advisable.}, language = {en} } @article{FlacheneckerBuresGawliketal.2020, author = {Flachenecker, Peter and Bures, Anna Karoline and Gawlik, Angeli and Weiland, Ann-Christin and Kuld, Sarah and Gusowski, Klaus and Streber, Ren{\´e} and Pfeifer, Klaus and Tallner, Alexander}, title = {Efficacy of an internet-based program to promote physical activity and exercise after inpatient rehabilitation in persons with multiple sclerosis: a randomized, single-blind, controlled study}, series = {International Journal of Environmental Research and Public Health}, volume = {17}, journal = {International Journal of Environmental Research and Public Health}, number = {12}, issn = {1660-4601}, doi = {10.3390/ijerph17124544}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207863}, year = {2020}, abstract = {Background: Multimodal rehabilitation improves fatigue and mobility in persons with multiple sclerosis (PwMS). Effects are transient and may be conserved by internet-based physical activity promotion programs. Objective: Evaluate the effects of internet-based physical activity and exercise promotion on fatigue, quality of life, and gait in PwMS after inpatient rehabilitation. Methods: PwMS (Expanded Disability Status Scale (EDSS) ≤ 6.0, fatigue: W{\"u}rzburg Fatigue Inventory for Multiple Sclerosis (WEIMuS) ≥ 32) were randomized into an intervention group (IG) or a control group (CG). After rehabilitation, IG received 3 months of internet-based physical activity promotion, while CG received no intervention. Primary outcome: self-reported fatigue (WEIMuS). Secondary outcomes: quality of life (Multiple Sclerosis Impact Scale 29, MSIS-29), gait (2min/10m walking test, Tinetti score). Measurements: beginning (T0) and end (T1) of inpatient rehabilitation, 3 (T2) and 6 (T3) months afterwards. Results: 64 of 84 PwMS were analyzed (IG: 34, CG: 30). After rehabilitation, fatigue decreased in both groups. At T2 and T3, fatigue increased again in CG but was improved in IG (p < 0.001). MSIS-29 improved in both groups at T1 but remained improved at T2 and T3 only in IG. Gait improvements were more pronounced in IG at T2. Conclusions: The study provides Class II evidence that the effects of rehabilitation on fatigue, quality of life, and gait can be maintained for 3-6 months with an internet-based physical activity and exercise promotion program.}, language = {en} } @article{GomezFernandezLopezdeLapuentePortillaAstobizaetal.2020, author = {G{\´o}mez-Fern{\´a}ndez, Paloma and Lopez de Lapuente Portilla, Aitzkoa and Astobiza, Ianire and Mena, Jorge and Urtasun, Andoni and Altmann, Vivian and Matesanz, Fuencisla and Otaegui, David and Urcelay, Elena and Antig{\"u}edad, Alfredo and Malhotra, Sunny and Montalban, Xavier and Castillo-Trivi{\~n}o, Tamara and Espino-Pais{\´a}n, Laura and Aktas, Orhan and Buttmann, Mathias and Chan, Andrew and Fontaine, Bertrand and Gourraud, Pierre-Antoine and Hecker, Michael and Hoffjan, Sabine and Kubisch, Christian and K{\"u}mpfel, Tania and Luessi, Felix and Zettl, Uwe K. and Zipp, Frauke and Alloza, Iraide and Comabella, Manuel and Lill, Christina M. and Vandenbroeck, Koen}, title = {The rare IL22RA2 signal peptide coding variant rs28385692 decreases secretion of IL-22BP isoform-1, -2 and -3 and is associated with risk for multiple sclerosis}, series = {Cells}, volume = {9}, journal = {Cells}, number = {1}, issn = {2073-4409}, doi = {10.3390/cells9010175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200769}, year = {2020}, abstract = {The IL22RA2 locus is associated with risk for multiple sclerosis (MS) but causative variants are yet to be determined. In a single nucleotide polymorphism (SNP) screen of this locus in a Basque population, rs28385692, a rare coding variant substituting Leu for Pro at position 16 emerged significantly (p = 0.02). This variant is located in the signal peptide (SP) shared by the three secreted protein isoforms produced by IL22RA2 (IL-22 binding protein-1(IL-22BPi1), IL-22BPi2 and IL-22BPi3). Genotyping was extended to a Europe-wide case-control dataset and yielded high significance in the full dataset (p = 3.17 × 10\(^{-4}\)). Importantly, logistic regression analyses conditioning on the main known MS-associated SNP at this locus, rs17066096, revealed that this association was independent from the primary association signal in the full case-control dataset. In silico analysis predicted both disruption of the alpha helix of the H-region of the SP and decreased hydrophobicity of this region, ultimately affecting the SP cleavage site. We tested the effect of the p.Leu16Pro variant on the secretion of IL-22BPi1, IL-22BPi2 and IL-22BPi3 and observed that the Pro16 risk allele significantly lowers secretion levels of each of the isoforms to around 50\%-60\% in comparison to the Leu16 reference allele. Thus, our study suggests that genetically coded decreased levels of IL-22BP isoforms are associated with augmented risk for MS.}, language = {en} } @article{HaarmannNehenDeissetal.2015, author = {Haarmann, Axel and Nehen, Mathias and Deiß, Annika and Buttmann, Mathias}, title = {Fumaric acid esters do not reduce inflammatory NF-\(\kappa\)B/p65 nuclear translocation, ICAM-1 expression and T-cell adhesiveness of human brain microvascular endothelial cells}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160819086}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148295}, pages = {19086-19095}, year = {2015}, abstract = {Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 \(\mu\)M blocked the IL-1\(\beta\)-induced nuclear translocation of NF-\(\kappa\)B/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1\(\beta\)-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1\(\beta\)-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.}, language = {en} } @article{HaarmannSchuhmannSilwedeletal.2019, author = {Haarmann, Axel and Schuhmann, Michael K. and Silwedel, Christine and Monoranu, Camelia-Maria and Stoll, Guido and Buttmann, Mathias}, title = {Human brain endothelial CXCR2 is inflammation-inducible and mediates CXCL5- and CXCL8-triggered paraendothelial barrier breakdown}, series = {International Journal of Molecular Science}, volume = {20}, journal = {International Journal of Molecular Science}, number = {3}, issn = {1422-0067}, doi = {10.3390/ijms20030602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201297}, year = {2019}, abstract = {Chemokines (C-X-C) motif ligand (CXCL) 5 and 8 are overexpressed in patients with multiple sclerosis, where CXCL5 serum levels were shown to correlate with blood-brain barrier dysfunction as evidenced by gadolinium-enhanced magnetic resonance imaging. Here, we studied the potential role of CXCL5/CXCL8 receptor 2 (CXCR2) as a regulator of paraendothelial brain barrier function, using the well-characterized human cerebral microvascular endothelial cell line hCMEC/D3. Low basal CXCR2 mRNA and protein expression levels in hCMEC/D3 were found to strongly increase under inflammatory conditions. Correspondingly, immunohistochemistry of brain biopsies from two patients with active multiple sclerosis revealed upregulation of endothelial CXCR2 compared to healthy control tissue. Recombinant CXCL5 or CXCL8 rapidly and transiently activated Akt/protein kinase B in hCMEC/D3. This was followed by a redistribution of tight junction-associated protein zonula occludens-1 (ZO-1) and by the formation of actin stress fibers. Functionally, these morphological changes corresponded to a decrease of paracellular barrier function, as measured by a real-time electrical impedance-sensing system. Importantly, preincubation with the selective CXCR2 antagonist SB332235 partially prevented chemokine-induced disturbance of both tight junction morphology and function. We conclude that human brain endothelial CXCR2 may contribute to blood-brain barrier disturbance under inflammatory conditions with increased CXCL5 and CXCL8 expression, where CXCR2 may also represent a novel pharmacological target for blood-brain barrier stabilization.}, language = {en} } @article{HiewNguemeniZeller2022, author = {Hiew, Shawn and Nguemeni, Carine and Zeller, Daniel}, title = {Efficacy of transcranial direct current stimulation in people with multiple sclerosis: a review}, series = {European Journal of Neurology}, volume = {29}, journal = {European Journal of Neurology}, number = {2}, doi = {10.1111/ene.15163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259424}, pages = {648-664}, year = {2022}, abstract = {Background and purpose Multiple sclerosis (MS) is a chronic inflammatory disease causing a wide range of symptoms including motor and cognitive impairment, fatigue and pain. Over the last two decades, non-invasive brain stimulation, especially transcranial direct current stimulation (tDCS), has increasingly been used to modulate brain function in various physiological and pathological conditions. However, its experimental applications for people with MS were noted only as recently as 2010 and have been growing since then. The efficacy for use in people with MS remains questionable with the results of existing studies being largely conflicting. Hence, the aim of this review is to paint a picture of the current state of tDCS in MS research grounded on studies applying tDCS that have been done to date. Methods A keyword search was performed to retrieve articles from the earliest article identified until 14 February 2021 using a combination of the groups (1) 'multiple sclerosis', 'MS' and 'encephalomyelitis' and (2) 'tDCS' and 'transcranial direct current stimulation'. Results The analysis of the 30 articles included in this review underlined inconsistent effects of tDCS on the motor symptoms of MS based on small sample sizes. However, tDCS showed promising benefits in ameliorating fatigue, pain and cognitive symptoms. Conclusion Transcranial direct current stimulation is attractive as a non-drug approach in ameliorating MS symptoms, where other treatment options remain limited. The development of protocols tailored to the individual's own neuroanatomy using high definition tDCS and the introduction of network mapping in the experimental designs might help to overcome the variability between studies.}, language = {en} } @article{IpKronerGrohetal.2012, author = {Ip, Chi Wang and Kroner, Antje and Groh, Janos and Huber, Marianne and Klein, Dennis and Spahn, Irene and Diem, Ricarda and Williams, Sarah K. and Nave, Klaus-Armin and Edgar, Julia M. and Martini, Rudolf}, title = {Neuroinflammation by Cytotoxic T-Lymphocytes Impairs Retrograde Axonal Transport in an Oligodendrocyte Mutant Mouse}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0042554}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134982}, pages = {e42554}, year = {2012}, abstract = {Mice overexpressing proteolipid protein (PLP) develop a leukodystrophy-like disease involving cytotoxic, CD8+ T-lymphocytes. Here we show that these cytotoxic T-lymphocytes perturb retrograde axonal transport. Using fluorogold stereotactically injected into the colliculus superior, we found that PLP overexpression in oligodendrocytes led to significantly reduced retrograde axonal transport in retina ganglion cell axons. We also observed an accumulation of mitochondria in the juxtaparanodal axonal swellings, indicative for a disturbed axonal transport. PLP overexpression in the absence of T-lymphocytes rescued retrograde axonal transport defects and abolished axonal swellings. Bone marrow transfer from wildtype mice, but not from perforin- or granzyme B-deficient mutants, into lymphocyte-deficient PLP mutant mice led again to impaired axonal transport and the formation of axonal swellings, which are predominantly located at the juxtaparanodal region. This demonstrates that the adaptive immune system, including cytotoxic T-lymphocytes which release perforin and granzyme B, are necessary to perturb axonal integrity in the PLP-transgenic disease model. Based on our observations, so far not attended molecular and cellular players belonging to the immune system should be considered to understand pathogenesis in inherited myelin disorders with progressive axonal damage.}, language = {en} }