@phdthesis{Candemir2018, author = {Candemir, Esin}, title = {Involvement of neuronal nitric oxide synthase (NOS-I) PDZ interactions in neuropsychiatric disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151194}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Neuronal nitric oxide (NO) synthase (NOS-I) and its adaptor protein (NOS1AP) have been repeatedly and consistently associated with neuropsychiatric disorders in several genetic association and linkage studies, as well as functional studies. NOS-I has an extended PDZ domain which enables it to interact with postsynaptic density protein 95 (PSD-95) bringing NOS-I in close proximity to NMDA receptors. This interaction allows NMDA receptor activity dependent calcium-influx to activate NOS-I, linking NO synthesis to regulation of glutamatergic signaling pathways. NOS1AP is a PDZ-domain ligand of NOS-I and has been proposed to compete with PSD-95 for NOS-I interaction. Studies performed on post-mortem brain tissues have shown increased expression of NOS1AP in patients with schizophrenia and bipolar disorder, suggesting that increased NOS-I/NOS1AP interactions might be involved in neuropsychiatric disorders possibly through disruption of NOS-I PDZ interactions. Therefore, I have investigated the involvement of NOS-I in different endophenotypes of neuropsychiatric disorders by targeting its specific PDZ interactions in vitro and in vivo. To this end, I used recombinant adeno-associated virus (rAAV) vectors expressing NOS1AP isoforms/domains (NOS1AP-L: full length NOS1AP; NOS1AP-LC20: the last 20 amino acids of NOS1AP-L, containing the PDZ interaction motif suggested to stabilize interaction with NOS-I; NOS1AP-LΔC20: NOS1AP-L lacking the last 20 amino acids; NOS1AP-S: the short isoform of NOS1AP), residues 396-503 of NOS1AP-L (NOS1AP396-503) encoding the full NOS-I interaction domain, and N-terminal 133 amino acids of NOS-I (NOS-I1-133) encoding for the extended PDZ-domain. Neuropsychiatric disorders involve morphological brain changes including altered dendritic development and spine plasticity. Hence, I have examined dendritic morphology in primary cultured hippocampal and cortical neurons upon overexpression of constructed rAAV vectors. Sholl analysis revealed that overexpression of NOS1AP-L and NOS1AP-LΔC20 mildly reduced dendritic length/branching. Moreover, overexpression of all NOS1AP isoforms/domains resulted in highly altered spine plasticity including significant reduction in the number of mature spines and increased growth of filopodia. These findings suggest that NOS1AP affects dendritic growth and development of dendritic spines, which may involve both, increased NOS-I/NOS1AP interaction as well as interaction of NOS1AP with proteins other than NOS-I. Interestingly, the observed alterations in dendritic morphology were reminiscent of those observed in post-mortem brains of patients with neuropsychiatric disorders. Given the dendritic alterations in vitro, I have examined, whether disruption of NOS-I PDZ interaction would also result in behavioral deficits associated with neuropsychiatric disorders. To this end, rAAV vectors expressing NOS1AP-L, NOS1AP396-503, NOS-I1-133, and mCherry were stereotaxically delivered to the dorsal hippocampus of 6-week-old male C57Bl/6J mice. One week after surgery, mice were randomly separated into two groups. One of those groups underwent three weeks of chronic mild stress (CMS). Afterwards all mice were subjected to a comprehensive behavioral analysis. The findings revealed that overexpression of the constructs did not result in phenotypes related to anxiety or depression, though CMS had an anxiolytic effect independent of the injected construct. Mice overexpressing NOS-I1-133, previously shown to disrupt NOS-I/PSD-95 interaction, showed impaired spatial memory, sensorimotor gating, social interaction, and increased locomotor activity. NOS1AP overexpressing mice showed mild impairments in sensorimotor gating and spatial working memory and severely impaired social interaction. NOS1AP396-503 overexpressing mice also showed impaired social interaction but enhanced sensorimotor gating and reduced locomotor activity. Taken together, these behavioral findings indicate an involvement of NOS-I PDZ interactions in phenotypes associated with positive symptoms and cognitive deficits of psychotic disorders. In summary, this study revealed an important contribution of NOS-I protein interactions in the development of endophenotypic traits of neuropsychiatric disorders, in particular schizophrenia, at morphological and behavioral levels. These findings might eventually aid to a better understanding of NOS-I-dependent psychopathogenesis, and to develop pharmacologically relevant treatment strategies.}, subject = {Stickstoffmonoxid-Synthase}, language = {en} } @article{DavisYuKeenanetal.2013, author = {Davis, Lea K. and Yu, Dongmei and Keenan, Clare L. and Gamazon, Eric R. and Konkashbaev, Anuar I. and Derks, Eske M. and Neale, Benjamin M. and Yang, Jian and Lee, S. Hong and Evans, Patrick and Barr, Cathy L. and Bellodi, Laura and Benarroch, Fortu and Berrio, Gabriel Bedoya and Bienvenu, Oscar J. and Bloch, Michael H. and Blom, Rianne M. and Bruun, Ruth D. and Budman, Cathy L. and Camarena, Beatriz and Campbell, Desmond and Cappi, Carolina and Cardona Silgado, Julio C. and Cath, Danielle C. and Cavallini, Maria C. and Chavira, Denise A. and Chouinard, Sylvian and Conti, David V. and Cook, Edwin H. and Coric, Vladimir and Cullen, Bernadette A. and Deforce, Dieter and Delorme, Richard and Dion, Yves and Edlund, Christopher K. and Egberts, Karin and Falkai, Peter and Fernandez, Thomas V. and Gallagher, Patience J. and Garrido, Helena and Geller, Daniel and Girard, Simon L. and Grabe, Hans J. and Grados, Marco A. and Greenberg, Benjamin D. and Gross-Tsur, Varda and Haddad, Stephen and Heiman, Gary A. and Hemmings, Sian M. J. and Hounie, Ana G. and Illmann, Cornelia and Jankovic, Joseph and Jenike, Micheal A. and Kennedy, James L. and King, Robert A. and Kremeyer, Barbara and Kurlan, Roger and Lanzagorta, Nuria and Leboyer, Marion and Leckman, James F. and Lennertz, Leonhard and Liu, Chunyu and Lochner, Christine and Lowe, Thomas L. and Macciardi, Fabio and McCracken, James T. and McGrath, Lauren M. and Restrepo, Sandra C. Mesa and Moessner, Rainald and Morgan, Jubel and Muller, Heike and Murphy, Dennis L. and Naarden, Allan L. and Ochoa, William Cornejo and Ophoff, Roel A. and Osiecki, Lisa and Pakstis, Andrew J. and Pato, Michele T. and Pato, Carlos N. and Piacentini, John and Pittenger, Christopher and Pollak, Yehunda and Rauch, Scott L. and Renner, Tobias J. and Reus, Victor I. and Richter, Margaret A. and Riddle, Mark A. and Robertson, Mary M. and Romero, Roxana and Ros{\`a}rio, Maria C. and Rosenberg, David and Rouleau, Guy A. and Ruhrmann, Stephan and Ruiz-Linares, Andreas and Sampaio, Aline S. and Samuels, Jack and Sandor, Paul and Sheppard, Broke and Singer, Harvey S. and Smit, Jan H. and Stein, Dan J. and Strengman, E. and Tischfield, Jay A. and Valencia Duarte, Ana V. and Vallada, Homero and Van Nieuwerburgh, Flip and Veenstra-VanderWeele, Jeremy and Walitza, Susanne and Wang, Ying and Wendland, Jens R. and Westenberg, Herman G. M. and Shugart, Yin Yao and Miguel, Euripedes C. and McMahon, William and Wagner, Michael and Nicolini, Humberto and Posthuma, Danielle and Hanna, Gregory L. and Heutink, Peter and Denys, Damiaan and Arnold, Paul D. and Oostra, Ben A. and Nestadt, Gerald and Freimer, Nelson B. and Pauls, David L. and Wray, Naomi R. and Stewart, S. Evelyn and Mathews, Carol A. and Knowles, James A. and Cox, Nancy J. and Scharf, Jeremiah M.}, title = {Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture}, series = {PLoS Genetics}, volume = {9}, journal = {PLoS Genetics}, number = {10}, issn = {1553-7390}, doi = {10.1371/journal.pgen.1003864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127377}, pages = {e1003864}, year = {2013}, abstract = {The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5\% accounted for 21\% of the TS heritability and 0\% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.}, language = {en} } @article{HibarAdamsJahanshadetal.2017, author = {Hibar, Derrek P. and Adams, Hieab H.H. and Jahanshad, Neda and Chauhan, Ganesh and Stein, Jason L and Hofer, Edith and Renteria, Miguel E. and Bis, Joshua C. and Arias-Vasquez, Alejandro and Ikram, M. Kamran and Desrivi{\`e}res, Sylvane and Vernooij, Meike W. and Abramovic, Lucija and Alhusaini, Saud and Amin, Najaf and Andersson, Micael and Arfanakis, Konstantinos and Aribisala, Benjamin S. and Armstrong, Nicola J. and Athanasiu, Lavinia and Axelsson, Tomas and Beecham, Ashley H. and Beiser, Alexa and Bernard, Manon and Blanton, Susan H. and Bohlken, Marc M. and Boks, Marco P. and Bralten, Janita and Brickman, Adam M. and Carmichael, Owen}, title = {Novel genetic loci associated with hippocampal volume}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, doi = {10.1038/ncomms13624}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182115}, pages = {12}, year = {2017}, abstract = {The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r\(_g\)=-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.}, language = {en} } @article{JanschZieglerForeroetal.2021, author = {Jansch, Charline and Ziegler, Georg C. and Forero, Andrea and Gredy, Sina and W{\"a}ldchen, Sina and Vitale, Maria Rosaria and Svirin, Evgeniy and Z{\"o}ller, Johanna E. M. and Waider, Jonas and G{\"u}nther, Katharina and Edenhofer, Frank and Sauer, Markus and Wischmeyer, Erhard and Lesch, Klaus-Peter}, title = {Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly}, series = {Journal of Neural Transmission}, volume = {128}, journal = {Journal of Neural Transmission}, number = {2}, issn = {1435-1463}, doi = {10.1007/s00702-021-02303-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268519}, pages = {225-241}, year = {2021}, abstract = {Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42\%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.}, language = {en} } @article{NowackaChmielewskaGrabowskaGrabowskietal.2022, author = {Nowacka-Chmielewska, Marta and Grabowska, Konstancja and Grabowski, Mateusz and Meybohm, Patrick and Burek, Malgorzata and Małecki, Andrzej}, title = {Running from stress: neurobiological mechanisms of exercise-induced stress resilience}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {21}, issn = {1422-0067}, doi = {10.3390/ijms232113348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297407}, year = {2022}, abstract = {Chronic stress, even stress of a moderate intensity related to daily life, is widely acknowledged to be a predisposing or precipitating factor in neuropsychiatric diseases. There is a clear relationship between disturbances induced by stressful stimuli, especially long-lasting stimuli, and cognitive deficits in rodent models of affective disorders. Regular physical activity has a positive effect on the central nervous system (CNS) functions, contributes to an improvement in mood and of cognitive abilities (including memory and learning), and is correlated with an increase in the expression of the neurotrophic factors and markers of synaptic plasticity as well as a reduction in the inflammatory factors. Studies published so far show that the energy challenge caused by physical exercise can affect the CNS by improving cellular bioenergetics, stimulating the processes responsible for the removal of damaged organelles and molecules, and attenuating inflammation processes. Regular physical activity brings another important benefit: increased stress robustness. The evidence from animal studies is that a sedentary lifestyle is associated with stress vulnerability, whereas a physically active lifestyle is associated with stress resilience. Here, we have performed a comprehensive PubMed Search Strategy for accomplishing an exhaustive literature review. In this review, we discuss the findings from experimental studies on the molecular and neurobiological mechanisms underlying the impact of exercise on brain resilience. A thorough understanding of the mechanisms underlying the neuroprotective potential of preconditioning exercise and of the role of exercise in stress resilience, among other things, may open further options for prevention and therapy in the treatment of CNS diseases.}, language = {en} }