@article{AeschlimannBrixnerCinchettietal.2017, author = {Aeschlimann, Martin and Brixner, Tobias and Cinchetti, Mirko and Frisch, Benjamin and Hecht, Bert and Hensen, Matthias and Huber, Bernhard and Kramer, Christian and Krauss, Enno and Loeber, Thomas H. and Pfeiffer, Walter and Piecuch, Martin and Thielen, Philip}, title = {Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas}, series = {Light: Science \& Applications}, volume = {6}, journal = {Light: Science \& Applications}, doi = {10.1038/lsa.2017.111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173265}, year = {2017}, abstract = {Radiationless energy transfer is at the core of diverse phenomena, such as light harvesting in photosynthesis\(^1\), energy-transfer-based microspectroscopies\(^2\), nanoscale quantum entanglement\(^3\) and photonic-mode hybridization\(^4\). Typically, the transfer is efficient only for separations that are much shorter than the diffraction limit. This hampers its application in optical communication and quantum information processing, which require spatially selective addressing. Here, we demonstrate highly efficient radiationless coherent energy transfer over a distance of twice the excitation wavelength by combining localized and delocalized\(^5\) plasmonic modes. Analogous to the Tavis-Cummings model, two whispering-gallery-mode antennas\(^6\) placed in the foci of an elliptical plasmonic cavity\(^7\) fabricated from single-crystal gold plates act as a pair of oscillators coupled to a common cavity mode. Time-resolved two-photon photoemission electron microscopy (TR 2P-PEEM) reveals an ultrafast long-range periodic energy transfer in accordance with the simulations. Our observations open perspectives for the optimization and tailoring of mesoscopic energy transfer and long-range quantum emitter coupling.}, language = {en} } @article{ZusanGiesekingZersonetal.2015, author = {Zusan, Andreas and Gieseking, Bj{\"o}rn and Zerson, Mario and Dyakonov, Vladimir and Magerle, Robert and Deibel, Carsten}, title = {The Effect of Diiodooctane on the Charge Carrier Generation in Organic Solar Cells Based on the Copolymer PBDTTT-C}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, doi = {10.1038/srep08286}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125022}, pages = {8286}, year = {2015}, abstract = {Microstructural changes and the understanding of their effect on photocurrent generation are key aspects for improving the efficiency of organic photovoltaic devices. We analyze the impact of a systematically increased amount of the solvent additive diiodooctane (DIO) on the morphology of PBDTTT-C:PC71BM blends and related changes in free carrier formation and recombination by combining surface imaging, photophysical and charge extraction techniques. We identify agglomerates visible in AFM images of the 0\% DIO blend as PC71BM domains embedded in an intermixed matrix phase. With the addition of DIO, a decrease in the size of fullerene domains along with a demixing of the matrix phase appears for 0.6\% and 1\% DIO. Surprisingly, transient absorption spectroscopy reveals an efficient photogeneration already for the smallest amount of DIO, although the largest efficiency is found for 3\% DIO. It is ascribed to a fine-tuning of the blend morphology in terms of the formation of interpenetrating donor and acceptor phases minimizing geminate and nongeminate recombination as indicated by charge extraction experiments. An increase in the DIO content to 10\% adversely affects the photovoltaic performance, most probably due to an inefficient free carrier formation and trapping in a less interconnected donor-acceptor network.}, language = {en} }