@phdthesis{Gao2017, author = {Gao, Shiqiang}, title = {Characterizing new photoreceptors to expand the Optogenetic toolbox}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112941}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Optogenetics is a method to control the cell activity with light by expression of a natural or engineered photoreceptor via genetic modification technology. Optogenetics early success came with the light-gated cation channel "Channelrhodopsin-2" in neurons and expanded from neuroscience to other research fields such as cardiac research and cell signaling, also due to the enrichment by new photoreceptors. In this study, I focus on searching and characterizing new photoreceptors to expand the optogenetic tool box. In this work I characterize three newly discovered microbial rhodopsins and some engineered mutants of them. The first rhodopsin is a proton pump from the diatom Fragilariopsis cylindrus, Fragilariopsis Rhodopsin or abbreviated: FR. I cloned the full-length FR and proved it to be a light-activated proton pump with high efficacy in comparison to Bacteriorhodopsin (BR). During this study, I also developed a new method to improve the plasma membrane targeting of several microbial rhodopsins. I also obtained a FR mutant (channel-like FR or chFR) which behaves like a light-gated proton channel. FR can be used for optogenetic hyperpolarization or alkalization of a cell while the chFR could be used for depolarization or lowering of the cellular pH. The induction of FR expression under iron-limited conditions in the diatom indicated an alternative energy generation mechanism of F. cylindrus when iron-containing enzymes are scarce. I then characterized a new microbial rhodopsin with novel light-regulated Guanylyl Cyclase (GC) activity. This rhodopsin guanylyl cyclase from the fungus Blastocladiella emersonii (B.e. CyclaseOpsin or BeCyclOp) has been proven by me to be an efficient light-gated GC with high specificity and fast kinetics. BeCyclOp also has a novel structure with eight transmembrane helices, containing a long cytosolic N-terminus which participates in the tight regulation of the GC activity. In collaboration with Prof. Alexander Gottschalk (Univ. Frankfurt/M.), BeCyclOp has been tested in muscle cells and sensory neurons of Caenorhabditis elegans and proven to be a powerful optogenetic tool in a living animal. I also generated a BeCyclOp mutant with enhanced light sensitivity. Already more than ten years ago, guanylyl cyclase rhodopsins were suggested to exist in Chlamydomonas reinhardtii by analyzing genomic sequence data. But until now no functional proof existed. By further cloning and sequencing I discovered such a rhodopsin with light-regulated guanylyl cyclase activity. This functional Cyclaseopsin (COP6c) is quite different to BeCyclOp, as it was proven to be a light-inhibited GC. Cop6c is much larger than BeCyclOp with a His-Kinase and a response regulator domain between the rhodopsin and the cyclase domain. I also introduced a new strategy for generating optogenetic tools by fusing the photoactivated adenylyl cyclase bPAC to two different CNG channels. These new tools function via light-gated cAMP production and subsequent CNG channel activation. These tools combined the properties of bPAC (highly sensitive to blue light) and CNG channels (high single-channel conductance and high Ca2+ permeability), as demonstrated by expression in Xenopus oocytes. As a further benefit the fusing of bPAC to CNG channels leads to a bPAC with a more than tenfold reduced dark activity which is a valuable improvement for bPAC itself as an optogenetic tool.}, subject = {Photorezeptor}, language = {en} } @article{LittsAchHammacketal.2016, author = {Litts, Katie M. and Ach, Thomas and Hammack, Kristen M. and Sloan, Kenneth R. and Zhang, Yuhua and Freund, K. Bailey and Curcio, Christine A.}, title = {Quantitative Analysis of Outer Retinal Tubulation in Age-Related Macular Degeneration From Spectral-Domain Optical Coherence Tomography and Histology}, series = {Investigative Ophthalmology \& Visual Science}, volume = {57}, journal = {Investigative Ophthalmology \& Visual Science}, doi = {10.1167/iovs.16-19262}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165532}, pages = {2647-2656}, year = {2016}, abstract = {Purpose: To assess outer retinal tubulation (ORT) morphology from spectral-domain optical coherence tomography (SD-OCT) volumes and donor eye histology, analyze ORT reflectivity, and estimate the number of cones surviving in ORT. Methods: In SD-OCT volumes from nine patients with advanced AMD, ORT was analyzed en face and in B-scans. The hyperreflective ORT border in cross-section was delineated and surface area calculated. Reflectivity was compared between ORT types (Closed, Open, Forming, and Branching). A flatmount retina from a donor with neovascular AMD was labeled to visualize the external limiting membrane that delimits ORT and allow measurements of cross-sectional cone area, center-to-center cone spacing, and cone density. The number of cones surviving in ORT was estimated. Results: By en face SD-OCT, ORT varies in complexity and shape. Outer retinal tubulation networks almost always contain Closed cross-sections. Spectral-domain OCT volumes containing almost exclusively Closed ORTs showed no significant direction-dependent differences in hyperreflective ORT border intensity. The surface areas of partial ORT assessed by SD-OCT volumes ranged from 0.16 to 1.76 mm2. From the flatmount retina, the average cross-sectional area of cone inner segments was 49.1 ± 7.9 μm2. The average cone spacing was 7.5 ± 0.6 μm. Outer retinal tubulation cone density was 20,351 cones/mm2. The estimated number of cones in ORT in a macula ranged from 26,399 to 186,833 cones, which is 6\% to 44\% of the cones present in a healthy macula. Conclusions: These first estimates for cone density and number of cones surviving in ORT suggest that ORT formation considerably distorts the photoreceptor mosaic. Results provide additional insight into the reflectivity characteristics and number of ORT cones observable in living patients by SD-OCT, as cones persist and disease progresses.}, language = {en} }